29 research outputs found

    The impact of an intensive inpatient violent offender treatment programme on intermediary treatment targets, violence risk and aggressive behaviour in a sample of mentally disordered offenders

    Get PDF
    This study examined the impact of an intensive inpatient violent offender treatment programme, Life Minus Violence - Enhanced (LMV- E, Ireland, 2008), on intermediary treatment targets, risk for violence, and aggressive behaviour during treatment in a sample of male mentally disordered offenders. Using quasi-experimental design, offenders who completed LMV-E and a comparison group showed reduced problems with impulsivity and anger regulation and improvements in social problem solving. Aggregate risk for future violence lessened in both treatment and comparison groups, although by a significantly greater degree for the comparison group. The aggressive behaviour of both groups reduced. Completion of the LMV-E conferred additional improvements in some facets of social problem solving and anger regulation. Neither group showed improvements in empathic responses, coping skills or problematic interpersonal style. Overall, these results suggest anger regulation, impulsivity and social problem solving are most amenable to change, that reductions in certain facets of these dynamic risk factors transpires with nonspecific psychiatric inpatient treatment, but that the LMV-E, a cognitive behavioural violence specific psychological treatment, confers greater change in some facets of social problem solving and anger regulation

    The MindfulBreather: Motion Guided Mindfulness.

    Get PDF
    For millennia, humans have focused their attention on the breath to develop mindfulness, but finding a scientific way to harness mindful breathing has proven elusive. Existing attempts to objectively measure and feedback on mindfulness have relied on specialist external hardware including electroencephalograms or respirometers that have been impractical for the majority of people learning to meditate. Consequently, training in the key skill of breath-awareness has lacked practical objective measures and guidance to enhance training. Here, we provide a brief technology report on an invention, The MindfulBreather® that addresses these issues. The technology is available to download embedded in a smartphone app that targets, measures and feedbacks on mindfulness of breathing in realtime to enhance training. The current article outlines only the technological concept with future studies quantifying efficacy, validity and reliability to be reported elsewhere. The MindfulBreather works by generating Motion Guided Mindfulness through interacting gyroscopic and touchscreen sensors in a three phase process: Mindfulness Induction (Phase I) gives standardized instruction to users to place their smartphone on their abdomen, breathe mindfully and to tap only at the peak of their inhalation. The smartphone's gyroscope detects periodic tilts during breathing to generate sinusoidal waveforms. Waveform-tap patterns are analyzed to determine whether the user is mindfully tapping only at the correct phase of the breathing cycle, indicating psychobiological synchronization. Mindfulness Maintenance (Phase II) provides reinforcing pleasant feedback sounds each time a breath is mindfully tapped at the right time, and the App records a mindful breath. Lastly, data-driven Insights are fed back to the user (Phase III), including the number of mindful breaths tapped and breathing rate reductions associated with parasympathetic engagement during meditation. The new MGM technology is then evaluated and contrasted with traditional mindfulness approaches and a novel Psychobiological Synchronization Model is proposed. In summary, unlike existing technology, the MindfulBreather requires no external hardware and repurposes regular smartphones to deliver app-embedded Motion-Guided Mindfulness. Technological applications include reducing mindwandering and down-regulation of the brain's default mode through enhanced mindful awareness. By objectively harnessing breath awareness, The MindfulBreather aims to realize the ancient human endeavor of mindfulness for the 21st century

    Chemoreflex Mediated Arrhythmia during Apnea at 5050m in Low but not High Altitude Natives

    Get PDF
    Peripheral chemoreflex mediated increases in both parasympathetic and sympathetic drive under chronic hypoxia may evoke bradyarrhythmias during apneic periods. We determined whether 1) voluntary apnea unmasks arrhythmia at low (344 m) and high (5,050 m) altitude, 2) high-altitude natives (Nepalese Sherpa) exhibit similar cardiovagal responses at altitude, and 3) bradyarrhythmias at altitude are partially chemoreflex mediated. Participants were grouped as Lowlanders ( n = 14; age = 27 ± 6 yr) and Nepalese Sherpa ( n = 8; age = 32 ± 11 yr). Lowlanders were assessed at 344 and 5,050 m, whereas Sherpa were assessed at 5,050 m. Heart rate (HR) and rhythm (lead II ECG) were recorded during rest and voluntary end-expiratory apnea. Peripheral chemoreflex contributions were assessed in Lowlanders ( n = 7) at altitude after 100% oxygen. Lowlanders had higher resting HR at altitude (70 ± 15 vs. 61 ± 15 beats/min; P &lt; 0.01) that was similar to Sherpa (71 ± 5 beats/min; P = 0.94). High-altitude apnea caused arrhythmias in 11 of 14 Lowlanders [junctional rhythm ( n = 4), 3° atrioventricular block ( n = 3), sinus pause ( n = 4)] not present at low altitude and larger marked bradycardia (nadir −39 ± 18 beats/min; P &lt; 0.001). Sherpa exhibited a reduced bradycardia response during apnea compared with Lowlanders ( P &lt; 0.001) and did not develop arrhythmias. Hyperoxia blunted bradycardia (nadir −10 ± 14 beats/min; P &lt; 0.001 compared with hypoxic state) and reduced arrhythmia incidence (3 of 7 Lowlanders). Degree of bradycardia was significantly related to hypoxic ventilatory response (HVR) at altitude and predictive of arrhythmias ( P &lt; 0.05). Our data demonstrate apnea-induced bradyarrhythmias in Lowlanders at altitude but not in Sherpa (potentially through cardioprotective phenotypes). The chemoreflex is an important mechanism in genesis of bradyarrhythmias, and the HVR may be predictive for identifying individual susceptibility to events at altitude. NEW &amp; NOTEWORTHY The peripheral chemoreflex increases both parasympathetic and sympathetic drive under chronic hypoxia. We found that this evoked bradyarrhythmias when combined with apneic periods in Lowlanders at altitude, which become relieved through supplemental oxygen. In contrast, high-altitude residents (Nepalese Sherpa) do not exhibit bradyarrhythmias during apnea at altitude through potential cardioprotective adaptations. The degree of bradycardia and bradyarrhythmias was related to the hypoxic ventilatory response, demonstrating that the chemoreflex plays an important role in these findings. </jats:p

    Trans-cerebral HCO3- and PCO2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans

    Get PDF
    This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO(3)(−)]) and carbon dioxide tension (PCO(2)) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO(2) (PaCO(2)) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO(3)(−)] increased by 0.15 ± 0.05 mmol ⋅ l(−1) per mmHg elevation in PaCO(2) across a wide physiological range (35 to 60 mmHg PaCO(2); P < 0.001). The narrowing of the venous-arterial [HCO(3)(−)] and PCO(2) differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO(3)(−)] exchange (CBF × venous-arterial [HCO(3)(−)] difference) was reduced indicating a shift from net release toward net uptake of [HCO(3)(−)] (P = 0.004). Arterial [HCO(3)(−)] was reduced by −0.48 ± 0.15 mmol ⋅ l(−1) per nmol ⋅ l(−1) increase in arterial [H(+)] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO(3)(−)] difference and arterial [H(+)] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO(3)(−)] exchange was unaltered throughout exercise when indexed against arterial [H(+)] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO(3)(−)] – during acute respiratory/exercise-induced metabolic acidosis, respectively – differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO(3)(−)] exchange)

    Global REACH 2018: The influence of acute and chronic hypoxia on cerebral haemodynamics and related functional outcomes during cold and heat stress

    Get PDF
    Real-world settings are composed of multiple environmental stressors, yet the majority of research in environmental physiology investigates these stressors in isolation. The brain is central in both behavioural and physiological responses to threatening stimuli and, given its tight metabolic and haemodynamic requirements, is particularly susceptible to environmental stress. We measured cerebral blood flow (CBF, duplex ultrasound), cerebral oxygen delivery (CDO2), oesophageal temperature, and arterial blood gases during exposure to three commonly experienced environmental stressors –heat, cold and hypoxia –in isolation, and in combination. Twelve healthy male subjects (27±11 years) underwent core cooling by 1.0ºC and core heating by 1.5ºC in randomized order at sea-level; acute hypoxia (PetO2= 50mmHg) was imposed at baseline and at each thermal extreme. Core cooling and heating protocols were repeated after 16±4 days residing at 4330m to investigate any interactions with high altitude acclimatization. Cold stress decreased CBF by 20–30% and CDO2 by 12–19%(both p0.08). The increases in CBF with acute hypoxia during thermal stress were appropriate to maintain CDO2 at normothermic, normoxic values. Reaction time was faster and slower by 6-9%with heating and cooling, respectively(both p<0.01), but central (brain) processes were not impaired by any combination of environmental stressors. These findings highlight the powerful influence of core cooling in reducing CDO2. Despite these large reductions in CDO2 with cold stress, gross indices of cognition remained stable

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination

    Hourly staircase sprinting exercise “snacks” improve femoral artery shear patterns but not flow-mediated dilation or cerebrovascular regulation: A pilot study

    No full text
    Healthy males (n=10; 244 years; BMI: 242 kg/m2) completed two randomized conditions separated by ≥48 hours involving 6-8.5 hours of sitting with (“stair snacks”) and without (sedentary) hourly staircase sprint interval exercise (approx. 14-20 s each). Resting blood flow and shear rates were measured in the femoral artery, internal carotid artery, and vertebral artery (Duplex ultrasound). Flow-mediated dilation (FMD) was quantified as an index of peripheral endothelial function in the femoral artery. Neurovascular coupling (NVC; regional blood flow response to local increases in cerebral metabolism) was assessed in the posterior cerebral artery (transcranial Doppler ultrasound). Femoral artery hemodynamics were higher following the active trial with no change in the sedentary trial, including blood flow (+3223% vs. -1028%; P=0.015 and P=0.253, respectively), vascular conductance (+3227% vs. -1526%; P=0.012 and P=0.098, respectively), and mean shear rate (+178% vs. -828%; P=0.004 and P=0.310, respectively). The change in FMD was not different within or between conditions (P=0.184). Global cerebral blood flow (CBF), conductance, shear patterns, and NVC were not different within or between conditions (all P>0.05). Overall, exercise “stair snacks” improve femoral artery blood flow and shear patterns but not peripheral (e.g., FMD) or cerebral (e.g., CBF and NVC) vascular function following prolonged sitting. The study was registered at ClinicalTrials.gov (NCT03374436) Key findings: ● Breaking up 8.5 hours of sitting with hourly staircase sprinting exercise “snacks” improves resting femoral artery shear patterns but not flow-mediated dilation. ● Cerebral blood flow and neurovascular coupling were unaltered following 6 hours of sitting with and without hourly exercise breaks.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore