9 research outputs found
Zeolitic imidazole Framework-8 (ZIF-8) fibers by gas-phase conversion of electroblown zinc oxide and aluminum doped zinc oxide fibers
Abstract
Electroblowing was used to prepare ZnO and aluminum doped zinc oxide (AZO, 1–3 cation-% of Al) fibers. The as-blown fibers were calcined at 500 °C to obtain the target material. The average fiber diameters ranged from 240 ± 60 nm for ZnO fibers to 330 ± 80 nm for AZO with 3% Al. Smaller crystallite size was measured with x-ray diffraction for the Al doped fibers. Electroblowing was found out be an effective method to increase the fiber productivity over electrospinning and other methods reported in literature to prepare AZO fibers as a high production rate of 0.32 g/h was achieved. The ZnO and AZO fibers could be converted to zeolitic imidazole framework-8 [ZIF-8, zinc(2-methylimidazolate)₂] by a solvent free thermal treatment in an autoclave under 2-methylimidazole (HmIM) vapor at 150 and 200 °C while preserving the fibrous structure. The conversion process to ZIF-8 occurred faster at higher temperatures and on fibers with smaller crystallite size. Depending on the conversion treatment time either ZnO/ZIF-8 and AZO/ZIF-8 core/shell fibers or ZIF-8 fibers could be obtained. At best the prepared ZIF-8 fibers had a very high BET specific surface area of 1340 m²/g
Utilization of Volatile Organic Compounds as an Alternative for Destructive Abatement
The treatment of volatile organic compounds (VOC) emissions is a necessity of today. The catalytic treatment has already proven to be environmentally and economically sound technology for the total oxidation of the VOCs. However, in certain cases, it may also become economical to utilize these emissions in some profitable way. Currently, the most common way to utilize the VOC emissions is their use in energy production. However, interesting possibilities are arising from the usage of VOCs in hydrogen and syngas production. Production of chemicals from VOC emissions is still mainly at the research stage. However, few commercial examples exist. This review will summarize the commercially existing VOC utilization possibilities, present the utilization applications that are in the research stage and introduce some novel ideas related to the catalytic utilization possibilities of the VOC emissions. In general, there exist a vast number of possibilities for VOC utilization via different catalytic processes, which creates also a good research potential for the future
Ceramic hydroxyapatite foam as a new material for Bisphenol A removal from contaminated water
Abstract
Ceramic hydroxyapatite foam (CF-HAP) was prepared by combining slip-casting and foaming methods. The prepared CF-HAP was characterized by scanning electron microscopy (SEM), physisorption of N2, Fourier transforms infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results of the specific surface area and SEM analyses revealed that the used shaping method provides CF-HAP with a wide range of porosity including macro and mesopores. Based on FTIR and XRD analyses, the CF-HAP is similar to pure well-crystallized hydroxyapatite. The adsorption results revealed that 94% of the BPA with a concentration of (40 mg/L) was effectively removed from the water and that the maximum adsorption capacity was higher in acidic than in basic medium. The thermodynamic studies indicated that the adsorption reaction was spontaneous and endothermic in nature. The adsorption capacity increased with the temperature and the BPA is chemisorbed on the ceramic foam. The isotherm data fitted slightly better with the Liu than with the Freundlich and Langmuir models suggesting that the adsorption was homogeneous and occurred only in the monolayer. The adsorption process depends largely on the BPA concentration and the results fitted well with the pseudo-first-order model. This confirms that the interaction between the BPA and the CF-HAP was mainly chemical in nature. The FTIR analysis of the used and fresh CF-HAP showed that all the hydroxyl and phosphorus bands characteristic of the hydroxyapatite shifted after adsorption of Bisphenol A. This suggests that the adsorption of Bisphenol A occurred in the sites of the hydroxyapatite. Therefore, it can be concluded that the CF-HAP has the potential to be used as an adsorbent for wastewater treatment and purification processes
Hydrothermal carbonization of Argan nut shell:functional mesoporous carbon with excellent performance in the adsorption of bisphenol A and diuron
Abstract
Hydrochar derived from Argan nut shell (ANS) was synthesized and applied to remove bisphenol A (BPA) and diuron. The results indicated that the hydrochar prepared at 200 °C (HTC@ANS-200) possessed a higher specific surface area (42 m²/g) than hydrochar (HTC@ANS-180) prepared at 180 °C (17 m²/g). The hydrochars exhibited spherical particles, which are rich in functional groups. The HTC@ANS-200 exhibited high adsorption efficiency, of about 92% of the BPA removal and 95% of diuron removal. The maximum Langmuir adsorption capacities of HTC@ANS-200 at room temperature were 1162.79 mg/for Bisphenol A and 833.33 mg/g for diuron (higher than most reported adsorbents). The adsorption process was spontaneous (− ΔG°) and exothermic (− ΔH°). Excellent reusability was reclaimed after five cycles, the removal efficiency showed a weak decrease of 4% for BPA and 1% for diuron. The analysis of Fourier transforms infrared spectrometry demonstrated that the aromatic C=C and OH played major roles in the adsorption mechanisms of BPA and diuron in this study. The high adsorption capacity was attributed to the beneficial porosity (The pore size of HTC@ANS-200 bigger than the size of BPA and diuron molecule) and surface functional groups. BPA and diuron adsorption occurred also via multiple adsorption mechanisms, including pore filling, π–π interactions, and hydrogen bonding interactions on HTC@ANS-200
Steam activation of waste biomass:highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology
Abstract
Highly microporous carbons were prepared from argan nut shell (ANS) using steam activation method. The carbons prepared (ANS@H2O-30, ANS@H2O-90, and ANS@H2O-120) were characterized using X-ray diffraction, scanning electron microscopy, Fourier-transform infrared, nitrogen adsorption, total X-ray fluorescence, and temperature-programmed desorption (TPD). The ANS@H2O-120 was found to have a high surface area of 2853 m²/g. The adsorption of bisphenol A and diuron on ANS@H2O-120 was investigated. The isotherm data were fitted using Langmuir and Freundlich models. Langmuir isotherm model presented the best fit to the experimental data suggesting micropore filling of ANS@H2O-120. The ANS@H2O-120 adsorbent demonstrated high monolayer adsorption capacity of 1408 and 1087 mg/g for bisphenol A and diuron, respectively. The efficiency of the adsorption was linked to the porous structure and to the availability of the surface adsorption sites on ANS@H2O-120. Response surface method was used to optimize the removal efficiency of bisphenol A and diuron on ANS@H2O-120 from aqueous solution
Structured carbon foam derived from waste biomass:application to endocrine disruptor adsorption
Abstract
In this paper, a novel structured carbon foam has been prepared from argan nut shell (ANS) was developed and applied in bisphenol A (BPA) removal from water. The results showed that the prepared carbon foam remove 93% of BPA (60 mg/L). The BPA equilibrium data obeyed the Liu isotherm, displaying a maximum uptake capacity of 323.0 mg/g at 20 °C. The calculated free enthalpy change (∆H° = − 4.8 kJ/mol) indicated the existence of physical adsorption between BPA and carbon foam. Avrami kinetic model was able to explain the experimental results. From the regeneration tests, we conclude that the prepared carbon foam has a good potential to be used as an economic and efficient adsorbent for BPA removal from contaminated water. Based on these results and the fact that the developed structured carbon foam is very easy to separate from treated water, it can serve as an interesting material for real water treatment applications
Toward new benchmark adsorbents:preparation and characterization of activated carbon from argan nut shell for bisphenol A removal
Abstract
The use of argan nut shell as a precursor for producing activated carbon was investigated in this work. Two activated carbons AC-HP and AC-Na were prepared from argan nut shell by chemical activation method using phosphoric acid (H₃PO₄) and sodium hydroxide (NaOH), respectively. Textural, morphological, and surface chemistry characteristics were studied by nitrogen physisorption, TGA, SEM, TXRF, FTIR, XRD, and by determining the pHPZC of the AC-HP. The adsorption experiments revealed that AC-HP was more efficient in adsorption of BPA due to high specific surface area (1372 m²/g) compared to AC-Na (798 m²/g). The obtained adsorption data of BPA on AC-HP correlated well with the pseudo-second-order model and the Langmuir isotherm (Qmax = 1250 mg/g at 293 K). The thermodynamic parameters (ΔG° < 0, ΔH° < 0, and ΔS° < 0) indicate that adsorption of BPA on AC-HP was spontaneous and exothermic in nature. The regeneration of AC-HP showed excellent results after 5 cycles (95–93%). This work does not only provide a potential way to use argan nut shell but also represents a sustainable approach to synthesize AC-HP, which might be an ideal material for various applications (energy storage, catalysis, and environmental remediation)
Two unconventional precursors to produce ZnCl₂‐based activated carbon for water treatment applications
Abstract
Two unconventional raw materials, the seeds from Spondias purpurea L. (red mombin) and Inga edulis (ice cream bean), were characterized and used as precursors to produce good‐quality zinc chloride‐activated carbons for potential use in water treatment applications. The red mombin seed was significantly more porous than the ice cream bean seed, while the activated carbons prepared from red mombin seed and ice cream bean seeds showed both a very well‐established microporous‐mesoporous structure. Equilibrium as well as kinetic adsorption experiments were conducted with methylene blue, methyl orange, and As(V). It was revealed that both seeds are unconventional, renewable, cheap, and suitable agro‐precursors for production of activated carbons with potential application in wastewater treatment