24 research outputs found

    The genomic tool-kit of the truffle Tuber melanosporum programmed cell death

    Get PDF
    A survey of the truffle Tuber melanosporum genome has shown the presence of 67 programmed cell death (PCD)-related genes. The 67 genes are all expressed during fruit body (FB) development of T. melanosporum development; their expression has been detected by DNA microarrays and qPCR. A set of 14 PCD-related genes have been chosen, those with the highest identities to the homologs of other species, for a deeper investigation. That PCD occurs during T melanosporum development has been demonstrated by the TUNEL reaction and transmission electron microscopy. The findings of this work, in addition to the discovery of PCD-related genes in the T. melanosporum genome and their expression during the differentiation and development of the FB, would suggest that one of the PCD subroutines, maybe autophagy, is involved in the FB ripening, i.e., sporogenesis

    Targeting a Newly Established Spontaneous Feline Fibrosarcoma Cell Line by Gene Transfer

    Get PDF
    Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV) fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A) from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-Îł or various combination of RB/p105, Ras-DN, IFN-Îł, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced) of feline fibrosarcomas

    Cadmium Induces p53-Dependent Apoptosis in Human Prostate Epithelial Cells

    Get PDF
    Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl2 and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl2 concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis

    SIRT1-Dependent Upregulation of Antiglycative Defense in HUVECs Is Essential for Resveratrol Protection against High Glucose Stress

    Get PDF
    Uncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG. In addition, we determined whether RSV essentially required SIRT1 to trigger adaptive responses in HG-challenged endothelial cells. We used primary human umbilical vein endothelial cells (HUVECs) undergoing a 24-h treatment with HG, with or without RSV and EX527 (i.e., SIRT1 inhibitor). We found that HG-induced glycative stress (GS) and oxidative stress (OS), by reducing SIRT1 activity, as well as by diminishing the efficiency of MG- and ROS-targeting protection. RSV totally abolished the HG-dependent cytotoxicity, and this was associated with SIRT1 upregulation, together with increased expression of GLO1, improved ROS-scavenging efficiency, and total suppression of HG-related GS and OS. Interestingly, RSV failed to induce effective response to HG cytotoxicity when EX527 was present, thus suggesting that the upregulation of SIRT1 is essential for RSV to activate the major antiglycative and antioxidative defense and avoid MG- and ROS-dependent molecular damages in HG environment

    SIRT1-dependent upregulation of antiglycative defense in HUVECs is essential for resveratrol protection against high glucose stress

    No full text
    Uncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG. In addition, we determined whether RSV essentially required SIRT1 to trigger adaptive responses in HG-challenged endothelial cells. We used primary human umbilical vein endothelial cells (HUVECs) undergoing a 24-h treatment with HG, with or without RSV and EX527 (i.e., SIRT1 inhibitor). We found that HG-induced glycative stress (GS) and oxidative stress (OS), by reducing SIRT1 activity, as well as by diminishing the efficiency of MG- and ROS-targeting protection. RSV totally abolished the HG-dependent cytotoxicity, and this was associated with SIRT1 upregulation, together with increased expression of GLO1, improved ROS-scavenging efficiency, and total suppression of HG-related GS and OS. Interestingly, RSV failed to induce effective response to HG cytotoxicity when EX527 was present, thus suggesting that the upregulation of SIRT1 is essential for RSV to activate the major antiglycative and antioxidative defense and avoid MG- and ROS-dependent molecular damages in HG environment

    Particle Debris Generated from Passenger Tires Induces Morphological and Gene Expression Alterations in the Macrophages Cell Line RAW 264.7

    No full text
    Air pollution in the urban environment is a topical subject. Aero-suspended particles can cause respiratory diseases in humans, ranging from inflammation to asthma and cancer. One of the components that is most prevalent in particulate matter (PM) in urban areas is the set of tire microparticles (1–20 μm) and nanoparticles (<1 μm) that are formed due to the friction of wheels with asphalt and are increased in slow-moving areas that involve a lot of braking actions. In this work, we studied the effect that microparticles generated from passenger tires (PTWP, passenger tire wear particles) have in vitro on murine macrophages cells RAW 264.7 at two concentrations of 25 and 100 μg/mL, for 24 and 48 h. In addition to the chemical characterization of the material and morphological characterization of the treated cells by transmission electron microscopy, gene expression analysis with RT-PCR and active protein analysis with Western blotting were performed. Growth curves were obtained, and the genotoxic effect was evaluated with a comet assay. The results indicate that initially, an induction of the apoptotic process is observable, but this is subsequently reversed by Bcl2. No genotoxic damage is present, but mild cellular abnormalities were observed in the treated cells

    Outcome of 47 Consecutive Sinus Lift Operations Using Aragonitic Calcium Carbonate Associated With Autologous Platelet-Rich Plasma: Clinical, Histologic, and Histomorphometrical Evaluations

    No full text
    Background: The reconstruction of the maxillary bone frequently represents a real challenge for maxillofacial surgeons especially regarding the best choice of a suitable material to produce the required bone augmentation. Aim: In this study, we summarize our clinical experience on 47 sinus lifts with lateral approach using a mixture of aragonitic calcium carbonate and autologous platelet-rich plasma compared with that of a previous published study in which bovine bone (LADDEC) and autologous bone were used in 50 sinus lift operations (Br J Oral Maxillofac Surg 2005;43:309Y313). Materials and Methods: We subjected 34 patients to sinus lift operation, for a total of 47 sinus lifts, using natural coral as osteoconductive material. This material, combined with autologous platelet-rich plasma, was placed onto the maxillary sinus floor, after carefully lifting the endosteum. Cases were clinically, radiographically, and histologically analyzed. Histomorphometrical analysis, tests of microhardness, and x-ray microanalysis were conducted comparing the various sample to controls obtained from the same patients. Results and Conclusions: Histomorphometrical analysis, microhardness test, and x-ray microanalysis demonstrated that the newly formed bone showed morphologic and structural characteristics that were similar for all the grafting materials compared (bovine bone, autologous bone, and coral). Although all the grafting materials did yield good results of maturation of the newly formed bone, best results were achieved using autologous bone

    Effects of wt p53 overexpression and cadmium treatment in PC-3 cells.

    No full text
    <p>A: early apoptosis detection. The frequencies of apoptotic cells were determined in both Adp53-transduced and control PC-3 cells by FITC-conjugated Annexin-V/PI and FACS analysis after 24-h treatment with different CdCl<sub>2</sub> concentrations (0,10, 20 and 30 µM). Histograms represent mean percentages ± SEM of Annexin-V positive/PI-negative cells (n = 3). B: western blot analysis. The levels of total p53 and p21 proteins were examined after Adp53-mediated overexpression of wild type p53, followed by 24-h treatment with different CdCl<sub>2</sub> concentrations (0,10,20 and 30 µM). Histograms represent relative band densities (mean ± SEM, n = 3), as determined by densitometry, using β-actin as the loading control for standardization. C: cell cycle distribution. FACS analysis of Adp53-transduced and control PC-3 cells was performed after 24-h treatment with different CdCl<sub>2</sub> concentrations (0, 10, 20 and 30 µM).</p
    corecore