9 research outputs found

    Valorization of Char From Biomass Gasification as Catalyst Support in Dry Reforming of Methane

    Get PDF
    This study responds to the need of finding innovative routes for valorizing char derived from biomass gasification. Char is currently treated as a waste representing an energetic and economic loss for plant owners. However, it displays many similarities to activated carbon (AC) and could replace it in several applications. In this regard, the current work investigates the use of gasification derived char as catalyst support in dry reforming of methane (DRM) reactions. Char collected from a commercial biomass gasifier currently in operation was characterized and employed for the synthesis of cobalt catalysts. The catalysts were characterized and tested in an atmospheric pressure fixed bed reactor operating at 850°C with CH4:CO2 = 1 and a weight hourly space velocity of 6,500 mL g−1 h−1. The effectiveness of the synthesized catalysts was defined based on CO2 and CH4 conversions, the corresponding H2 and CO yields and their stability. Accordingly, catalysts were synthesized with cobalt loading of 10, 15 and 20 wt.% on untreated and HNO3 treated char, and the catalyst with optimum comparative performance was promoted with 2 wt.%MgO. Catalysts prepared using untreated char showed low average conversions of 23 and 17% for CO2 and CH4, yields of 1 and 14% for H2 and CO, and deactivated after few minutes of operation. Higher metal loadings corresponded to lower conversion and yields. Although HNO3 treatment slightly increased conversions and yields and enhanced the stability of the catalyst, the catalyst deactivated again after few minutes. On the contrary, MgO addition boosted the catalyst performances leading to conversions (95 and 94% for CO2 and CH4) and yields (44 and 53% for H2 and CO) similar to what obtained using conventional supports such as Al2O3. Moreover, MgO catalysts proved to be very stable during the whole duration of the test

    experimental and modeling analysis of air and co2 biomass gasification in a reverse lab scale downdraft gasifier

    Get PDF
    Abstract This research work aims at investigating the effect of carbon dioxide feed in biomass gasification as a possible way to directly exploit the exhaust gas from the engine of combined heat and power systems to convert carbon dioxide to carbon monoxide via Boudouard reaction and consequently increase the carbon conversion and reduce char yield. The effects on biomass gasification using air, and air diluted with carbon dioxide were assessed in a reverse downdraft lab-scale gasifier utilizing 2 kg of pelletized biomass. This reactor is mounted on a digital weighing balance which enables the recording of mass loss during the gasification process. Furthermore, the mixture of air and CO2 is obtained from two mass flow controllers which enable constant and desired flux of gasifying agents across the gasifier. At the same time, an in-house developed thermodynamic equilibrium model was applied to predict the gas composition and char output. Unlike the classical equilibrium strategy that calculates the gasification products using the Gibbs energy minimization method at fixed temperature and pressure, the current approach is based on the enthalpy of the reactants, analogous to the adiabatic combustion temperature. Also, a correction factor accounting for the heat losses, was implemented. The model outcome shows a good agreement with the experimental results, especially in terms of predicted char yields and trends of the dominant producer gas species. The same strategy was used to describe the behavior of the gasification system and estimate the quality of producer gas and the cold gas efficiency of the system

    Investigations into enhanced wax production with combustion synthesized Fischer-Tropsch catalysts

    No full text
    Combustion synthesized (CS) cobalt catalysts deposited over two supports, alumina and silica doped alumina (SDA), were characterized and tested for its Fischer-Tropsch (FT) activity. The properties of CS catalysts were compared to catalysts synthesized by conventional impregnation method (IWI). The CS catalysts resulted in 40-70% increase in the yield of C6+ hydrocarbons compared to MI catalysts. The FT activity for CS catalysts showed formation of long chain hydrocarbon waxes (C24+) compared to the formation of middle distillates (C-10-C-20) for IWI synthesized catalysts, indicating higher hydrocarbon chain growth probability for CS catalysts. This is ascribed to the smaller crystallite sizes, increased degree of cobalt reduction and consequentially, a higher number of active metal sites, exposed over the catalyst surface. Additionally, 12-13% increase in the overall C6+ hydrocarbon yield is realized for SDA-CS catalysts, compared to Al2O3-CS catalysts. The improved performance of CS-SDA catalysts is attributed to 48% increase in cobalt dispersion compared to Al2O3 supported CS catalysts, which is again caused by the decrease in the cobalt -support interaction for SDA supports. The metal support interactions were analyzed using XPS and H-2 TPR-TPD experiments. Combustion method produced catalysts with smaller crystallite size (17-18 nm), higher degree of reduction (similar to 92%) and higher metal dispersion (16.1%) compared to the IWI method. Despite its enhanced properties, the CS catalysts require prominently higher reduction temperatures (similar to 1100-1200 K). The hydrocarbon product analysis for Al2O3 supported catalyst showed higher paraffin wax concentrations compared to SDA supported catalysts, due to the lower surface basicity of Al2O3. This work reveals the impact of the CS catalysts and the nature of support on FT activity and hydrocarbon product spectrum. (C) 2016 Elsevier Ltd. All rights reserved

    Biomass to liquid transportation fuel via Fischer Tropsch synthesis - Technology review and current scenario

    No full text
    Current global energy scenario and the environmental deterioration aspect motivates substituting fossil fuel with a renewable energy resource - especially transport fuel. This paper reviews the current status of trending biomass to liquid (BTL) conversion processes and focuses on the technological developments in Fischer Tropsch (FT) process. FT catalysts in use, and recent understanding of FT kinetics are explored. Liquid fuels produced via FT process from biomass derived syngas promises an attractive, clean, carbon neutral and sustainable energy source for the transportation sector. Performance of the FT process with various catalysts, operating conditions and its influence on the FT products are also presented. Experience from large scale commercial installations of FT plants, primarily utilizing coal based gasifiers, are discussed. Though biomass gasification plants exist for power generation via gas engines with power output of about 2 MWe; there are only a few equivalent sized FT plants for biomass derived syngas. This paper discusses the recent developments in conversion of biomass to liquid (BTL) transportation fuels via FT reaction and worldwide attempts to commercialize this process. All the data presented and analysed here have been consolidated from research experiences at laboratory scale as well as from industrial systems. Economic aspects of BTL are reviewed and compared. (C) 2015 Elsevier Ltd. All rights reserved

    Fuel-Rich Combustion Synthesized Co/Al2O3 Catalysts for Wax and Liquid Fuel Production via Fischer-Tropsch Reaction

    No full text
    Alumina supported cobalt catalysts were synthesized for Fischer-Tropsch (FT) reaction using combustion synthesis (CS) method via the redox reaction of hexamethylenetetramine and cobalt nitrate with equivalence ratios (phi) of 1, 1.2, and 1.5. Higher equivalence ratios (phi > 1.0) were selected to increase the synthesis temperature and thereby decrease the formation of cobalt aluminates. Chemisorption and XPS studies of CS(phi = 1.2) and CS(phi = 1.5) catalysts showed high degree of reduction, high metal dispersion, and decreased formation of cobalt aluminates compared to CS(phi = 1) catalysts. Higher FT activity was observed for catalysts synthesized with equivalence ratios of 1.2 and 1.5 compared to the catalysts synthesized with phi = 1. Simultaneously, the hydrocarbon product spectrum shifted from predominantly waxes (C24+) for CS(phi = 1) catalysts to mixed fractions of liquid fuel (C-6-C-24) and waxes for CS(phi = 1.2) and CS(phi = 1.5) catalysts. This work investigates the impact of CS stoichiometry on catalyst properties, in particular the metal support interaction, and its outcome on FT activity and selectivity

    Operation and Thermodynamic Modeling of a Novel Advanced Hydrothermal Reactor: Introduction of the Novel 3-Step Evolution Model

    No full text
    Liquid biowaste represents more than 98% of the total municipal waste streams on wet basis and 4–5% on dry basis. Recent attention has been focused on how to manage it optimally, and several novel technologies are being developed to valorize it. Among the developing alternatives is a technology that operates continuously by integrating a hydrothermal reactor, a gasifier and condenser to recover hydrochar using any produced gases to power the system. This study introduces the “3-step evolution model” in order to simulate the hydrothermal reactor. The model has been developed in a MATLAB/Cantera environment and calculates the outputs as the products of a series of sub-stoichiometric char-gas reactions. Experiments with chicken manure slurry as feedstock were implemented for the validation of the model. Treatment of 32.16 kg/h of chicken manure produces 4.57 kg/h of hydrochar and 3.45 kg/h of syngas. The 3-step evolution model simulated the correct ratio of solid-to-gas, 57–43% (excluding the liquids). The experimentally measured carbon dioxide is used as a correction factor to calculate all the other parameters that cannot be assessed during the continuous operation of the hydrothermal reactor. The simulated compositions for carbon dioxide and methane were 94–96% and 0.5–0.8%, respectively. The values were close to the experimental results that ranged from 94.7% to 95.6% for the carbon dioxide and from 0.5% to 0.7% for the methane. The model predicts that higher temperatures of operation would increase carbon monoxide composition from 4–5% up to 7–8%

    Fischer-Tropsch route for the conversion of biomass to liquid fuels - Technical and economic analysis

    No full text
    The techno-economics of biomass gasification systems for the production of Fischer-Tropsch (FT) based liquid fuels are analysed by estimating the overall mass and energy conversion of biomass to liquid (BTL) fuel. The investigation of BTL systems for 1000 kg/h biomass gasification system and an expected liquid hydrocarbon output of 1500 tonnes are estimated. The cost analysis, based on the annualized life cycle of the systems, includes a steam-oxygen based biomass gasification plant paired with the FT unit. The gasifier considered in this analysis is the downdraft reactor design, operating on oxygen-steam gasifying medium at an equivalence ratio of 0.1 and a steam-to-biomass ratio in the range of 0.8-1.2 to generate syngas with H-2/CO ratio of 2.1:1, ideally suitable for the cobalt based fixed bed FT reactor. The mass and energy balance reveal that for a once-through FT reactor configuration, substantial energy exists in the gas phase, which includes C1-05 hydrocarbons and unconverted syngas. The study suggests that the product gas be utilized in an IC engine and converted to electricity, for in-house power demands and for the sale of excess electricity to the grid. The analysis indicates a market competitive liquid fuel production with CO conversion greater than 60%, at a cost ranging from INR 35-40/litre (0.5-0.6 USD/litre) alongside electricity as a major co-product in the BTL system. This study examines the economics of building economically affordable and environmentally favourable BTL systems of smaller throughputs with particular reference to India. (C) 2017 Elsevier Ltd. All rights reserved
    corecore