217 research outputs found

    Ground vibration propagation and attenuation of vibrating compaction

    Get PDF
    When a high-power vibrating roller compact the subgrade, the vibration wave will quickly propagate along the surface of the subgrade and generate hazards to surrounding environment and structure. To study the vibration propagation rules of the roller, the vibration acceleration of the high-power vibrating roller was measured on the surface of the rock subgrade, coarse-grained soil subgrade and fine-grained soil subgrade. The respective relations between vibration acceleration and the distance from a vibration source in the vertical, horizontal radial and horizontal circumferential direction have been discovered. The research results show that the vibration peak frequency generated by the vibrating roller on the subgrade approximates vibration frequency. The vibration effective influence distance varies from 10m to14m, and the horizontal radial vibration is greater than that of vertical and horizontal circumferential direction. The vibration of the rock subgrade attenuates the most slowly and propagates the most remotely

    Tuning Band Alignment and Optical Properties of 2D van der Waals Heterostructure via Ferroelectric Polarization Switching

    Full text link
    Favourable band alignment and excellent visible light response are vital for photochemical water splitting. In this work, we have theoretically investigated how ferroelectric polarization and its reversibility in direction can be utilized to modulate the band alignment and optical absorption properties. For this objective, 2D van der Waals heterostructures (HTSs) are constructed by interfacing monolayer MoS2 with ferroelectric In2Se3. We find the switch of polarization direction has dramatically changed the band alignment, thus facilitating different type of reactions. In In2Se3/MoS2/In2Se3 heterostructures, one polarization direction supports hydrogen evolution reaction and another polarization direction can favour oxygen evolution reaction. These can be used to create tuneable photocatalyst materials where water reduction reactions can be selectively controlled by polarization switching. The modulation of band alignment is attributed to the shift of reaction potential caused by spontaneous polarization. Additionally, the formed type-II van der Waals HTSs also significantly improve charge separation and enhance the optical absorption in the visible and infrared regions. Our results pave a way in the design of van der Waals HTSs for water splitting using ferroelectric materials

    The thickness of the ventral medial prefrontal cortex predicts the prior-entry effect for allocentric representation in near space

    Get PDF
    Neuropsychological studies have demonstrated that the preferential processing of near-space and egocentric representation is associated with the self-prioritization effect (SPE). However, relatively little is known concerning whether the SPE is superior to the representation of egocentric frames or near-space processing in the interaction between spatial reference frames and spatial domains. The present study adopted the variant of the shape-label matching task (i.e., color-label) to establish an SPE, combined with a spatial reference frame judgment task, to examine how the SPE leads to preferential processing of near-space or egocentric representations. Surface-based morphometry analysis was also adopted to extract the cortical thickness of the ventral medial prefrontal cortex (vmPFC) to examine whether it could predict differences in the SPE at the behavioral level. The results showed a significant SPE, manifested as the response of self-associated color being faster than that of stranger-associated color. Additionally, the SPE showed a preference for near-space processing, followed by egocentric representation. More importantly, the thickness of the vmPFC could predict the difference in the SPE on reference frames, particularly in the left frontal pole cortex and bilateral rostral anterior cingulate cortex. These findings indicated that the SPE showed a prior entry effect for information at the spatial level relative to the reference frame level, providing evidence to support the structural significance of the self-processing region

    Differentiation of multipotent vascular stem cells contributes to vascular diseases.

    Get PDF
    It is generally accepted that the de-differentiation of smooth muscle cells, from the contractile to the proliferative/synthetic phenotype, has an important role during vascular remodelling and diseases. Here we provide evidence that challenges this theory. We identify a new type of stem cell in the blood vessel wall, named multipotent vascular stem cells. Multipotent vascular stem cells express markers, including Sox17, Sox10 and S100β, are cloneable, have telomerase activity, and can differentiate into neural cells and mesenchymal stem cell-like cells that subsequently differentiate into smooth muscle cells. On the other hand, we perform lineage tracing with smooth muscle myosin heavy chain as a marker and find that multipotent vascular stem cells and proliferative or synthetic smooth muscle cells do not arise from the de-differentiation of mature smooth muscle cells. In response to vascular injuries, multipotent vascular stem cells, instead of smooth muscle cells, become proliferative, and differentiate into smooth muscle cells and chondrogenic cells, thus contributing to vascular remodelling and neointimal hyperplasia. These findings support a new hypothesis that the differentiation of multipotent vascular stem cells, rather than the de-differentiation of smooth muscle cells, contributes to vascular remodelling and diseases

    Effect of Delay on Selection Dynamics in Long-Term Sphere Culture of Cancer Stem Cells

    Get PDF
    To quantitatively study the effect of delay on selection dynamics in long-term sphere culture of cancer stem cells (CSCs), a selection dynamic model with time delay is proposed. Theoretical results show that the ubiquitous time delay in cell proliferation may be one of the important factors to induce fluctuation, and numerical simulations indicate that the proposed selection dynamical model with time delay can provide a better fitting effect for the experiment of a long-term sphere culture of CSCs. Thus, it is valuable to consider the delay effect in the future study on the dynamics of nongenetic heterogeneity of clonal cell populations

    Reversible Gas Sensing by Ferroelectric Switch and 2D Molecule Multiferroics in In2Se3 Monolayer

    Full text link
    Two-dimensional ferroelectrics are important quantum materials which have found novel application in nonvolatile memories, however, the effects of reversible polarization on chemical reactions and interaction with environments are rarely studied despite of its importance. Here, based on the first-principles calculations, we found distinct gas adsorption behaviors on the surfaces of ferroelectric In2Se3 layer and the reversible gas caption and release controlled by ferroelectric switch. We rationalize the novel phenomena to the synergistic effect of the different electrostatic potential and electron transfer induced by band alignments between frontier molecular orbitals of gas and band edge states of substrate. Excitingly, the adsorption of paramagnetic gas molecules such as NO and NO2 can induce surface magnetism, which is also sensitive to ferroelectric polarization direction of In2Se3, indicating the application of In2Se3 as threshold magnetic sensors or switcher. Furthermore, it is suggested two NO molecules prefer to ferromagnetically couple with each other, the Curie temperature is polarization dependent which can reach up to 50K, leading to the long-sought 2D molecule multiferroics. The ferroelectric controllable adsorption behavior and molecule multiferroic feature will find extensive application in gas caption, selective catalytic reduction and spintronic device

    microRNA-33a-5p increases radiosensitivity by inhibiting glycolysis in melanoma.

    Get PDF
    Glycolysis was reported to have a positive correlation with radioresistance. Our previous study found that the miR-33a functioned as a tumor suppressor in malignant melanoma by targeting hypoxia-inducible factor1-alpha (HIF-1α), a gene known to promote glycolysis. However, the role of miR-33a-5p in radiosensitivity remains to be elucidated. We found that miR-33a-5p was downregulated in melanoma tissues and cells. Cell proliferation was downregulated after overexpression of miR-33a-5p in WM451 cells, accompanied by a decreased level of glycolysis. In contrast, cell proliferation was upregulated after inhibition of miR-33a-5p in WM35 cells, accompanied by increased glycolysis. Overexpression of miR-33a-5p enhanced the sensitivity of melanoma cells to X-radiation by MTT assay, while downregulation of miR-33a-5p had the opposite effects. Finally, in vivo experiments with xenografts in nude mice confirmed that high expression of miR-33a-5p in tumor cells increased radiosensitivity via inhibiting glycolysis. In conclusions, miR-33a-5p promotes radiosensitivity by negatively regulating glycolysis in melanoma

    Overexpression of long non-coding RNA NORAD promotes invasion and migration in malignant melanoma via regulating the MIR-205-EGLN2 pathway.

    Get PDF
    Growing evidence suggests that long non-coding RNAs NORAD and miR-205 play a significant role in regulating cancer progression and metastasis. In this study, high expression of NORAD was firstly observed in melanoma tissues and human malignant melanoma cell lines, our aim was to study the interaction of them in the process of invasion and migration of malignant melanoma cells. NORAD, miR-205, and EGLN2 mRNA level in MM cells was detected by qRT-PCR. In situ hybridization (ISH) was performed to detect NORAD expression in MM tissues specimens. Effects of NORAD and miR-205 on Prolyl hydroxylase 2 (EGLN2) expression was explored by western blot in MM cells line. Dual-luciferase reporter assay was performed to verify the interaction relationship between NORAD and miR-205, as well as, miR-205 and EGLN2. Transwell assay was conducted to explore the effects of NORAD and miR-205 in vitro. Xenografts in nude mice experiment were used to confirm the role of NORAD and miR-205 in vivo. In vitro, NORAD knockdown significantly inhibited migration and invasion of malignant melanoma cells and elevated the expression of miR-205, there was an interaction between miR-205 and NORAD in the RNA-induced silencing complex. Upregulation of miR-205 induced significant inhibition of migratory and invasive ability compared with the scrambled control. However, downregulating NORAD largely reversed this effect. Furthermore, the regulatory effects of miR-205 on EGLN2 levels and the induction of endoplasmic reticulum stress were reversed by NORAD. In vivo, deletion of miR-205 induced tumor growth in nude mice. NORAD may play critical roles in tumorigenesis and progression of malignant melanoma by regulating of the miR-205-EGLN2 pathway, and may serve as a new therapeutic target

    Sparse Representation Based Binary Hypothesis Model for Hyperspectral Image Classification

    Get PDF
    The sparse representation based classifier (SRC) and its kernel version (KSRC) have been employed for hyperspectral image (HSI) classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH) model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP) algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance

    Behavioral Oscillations in Visual Attention Modulated by Task Difficulty

    Get PDF
    The spotlight of attention is full of discrete moments and operates periodically. Recently, it has been well-documented there were behavioral oscillations in visual attention, however, different periodicities were demonstrated. Task difficulty may be an important factor causing disagreement in attentional periodic patterns. The present study examined behavioral oscillations in visual attention during difficult and easy tasks. A modified high temporal resolution cue-target paradigm in which the cue-target stimulus onset asynchrony (SOAs) varied from 0.1 to 1.08 s in steps of 20 ms was used. The target was detected with the accuracy of 65% in the difficult condition and 75% in the easy condition. Oscillatory patterns were analyzed and observed in behavioral performance. A theta rhythm was visible in the difficult version. However, attention oscillation increased to a higher frequency in the easy version. Task difficulty was negatively related to power for all bands. Our findings suggest that the attention spotlight switched faster when the task was easy, while, it switched much more slowly when the task was difficult in order to obtain more information. A flexible mechanism for attention spotlight was demonstrated, and task demand modulated attention oscillations
    • …
    corecore