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The sparse representation based classifier (SRC) and its kernel version (KSRC) have been employed for hyperspectral image (HSI)
classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and
assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based
binary hypothesis (SRBBH) model is established in this paper. In this model, a query pixel is represented in two ways, which
are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected
from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive
multiclass classification problem,where only the number of desired classes is required. Furthermore, the kernelmethod is employed
to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching
pursuit (KOMP) algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly
using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction
are used for validation and classification. It enhances the discrimination and hence improves the performance.

1. Introduction

The technology for artificial target recognition in nature
background is important to military science and civil auto-
control. Hyperspectral remote sensor captures digital images
in hundreds of narrow spectral bands, which span the visible
to infrared spectrum.The high spectral resolution of the data
provides an invaluable source of information regarding the
physical nature of the different materials and strengthens
the capability to identify structures and objects in the image
scene. As a result, it makes detecting and classifying the
target at the same time possible, that is, integrated detection
and classification. However, such a large number of spectral
channels imply the high dimensionality of the data and
bring challenge to image analysis. Most of the common
technologies designed for the analysis of grey level, color,
or multispectral images are not applicable to hyperspectral
images.

One of the most important applications of HSI is clas-
sification. Different materials usually reflect electromagnetic

energy differently at specific wavelengths. This enables dis-
crimination ofmaterials based on the spectral characteristics.
Various techniques have been developed for HSI classifica-
tion. SVM [1–3] is a powerful tool to solve supervised classi-
fication problem in remote sensing image scene and performs
pretty well. Variations of SVM-based algorithms have also
been proposed to improve the classification accuracy [4, 5].
In the context of supervised classification, such as SVM, an
additional problem is the so-calledHughes phenomenon that
occurs when the training set does not have enough samples
to ensure a reliable estimation of the classifier parameters. It
is hard to find the separating hyperplane between two classes
with very limited reference data while the number of spectral
channels is usually very large in hyperspectral image scene.

The sparse representation [6] has recently been applied
to hyperspectral detection and classification [7–9] relying
on the observation that the pixels belonging to same class
approximately lie in same low-dimensional subspace. Thus,
a query pixel can be sparsely represented by a few training
samples (atoms) from dictionary, and the associated sparse
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representation vector will implicitly encode the class infor-
mation. While SVM is a binary classifier (multiclass SVM
requires one-against-one or one-against-all strategy [10]), the
SRC is a multiclass classifier, which is from a reconstruction
point of view.The SRC can be regarded as generalized model
and often results in good performance. However, the number
of classes present in hyperspectral image scene has to be
known to structure the dictionary and calculate the residuals
when employing the sparsitymodel as [11, 12]. In addition, the
sparsity model may not be suitable for background pixels due
to the interaction between the target and background sparse
vectors.

In this paper, a sparse representation based binary
hypothesis (SRBBH) model, which can be regarded as a
discriminative and semisupervised model, is proposed to
strengthen the performance of sparsitymodel. Only the num-
ber of desired classes, which is accessible in most practical
cases, is required for SRBBH model. Thus, a target pixel is
approximately represented by union dictionary consisting of
both corresponding target training samples and background
training samples while a background pixel can be approxi-
mately represented just by background dictionary. Different
from SRC, different impacts the background dictionary and
union dictionary have on reconstruction, instead of residuals
themselves, are used for validation and classification in
SRBBH model. This scheme enhances the discriminative
power of different subspaces and then improves the classi-
fication performance. However, when the data structure is
complex and the problem becomes nonlinear, the SRBBH
model based classifier (SRBBHC) may not be competent any
more. With implicitly exploiting the higher order structure
of the given data, the kernel algorithm obtains significant
performance improvement. Therefore, the kernel SRBBHC
(KSRBBHC) is developed to project the data into high-
dimensional feature space in which the data becomes linearly
separable. Taking the projected data into consideration,
KSRBBHC intends to separately represent the desire class and
undesired class in corresponding high-dimensional feature
space and makes classification performance better.

The rest of the paper is organized as follows. Section 2
briefly reviews the conventional SRC and its kernel version.
Section 3 proposes the SRBBHC and its kernel version for
HSI. The effectiveness of proposed SRBBHC and KSRBBHC
is demonstrated by experimental results in Section 4. Finally,
conclusions are drawn in Section 5.

2. Sparse Representation Based Classification

2.1. SRC. In sparsity model, it is assumed that the spectral
signatures of pixels belonging to same class approximately
lie in same low-dimensional subspace. A query pixel is given
y ∈ R𝐵, where 𝐵 is the number of bands. Then the linear
representation of y can be written in terms of all training
samples as

y = Ax, (1)

where A = [A
1
,A
2
, . . . ,A

𝑀
] ∈ R𝐵×𝑁 is a structured

dictionary whose columns are 𝑁 training samples of all 𝑀

classes and x ∈ R𝑁×1 is the sparse coefficient vector. x can be
recovered by solving

x̂ = argmin 



y − Ax

2

s.t ‖x‖0 ≤ 𝐾
0
,

(2)

where ‖ ⋅ ‖
0
denotes the 𝑙

0
-norm, which is defined as the

number of nonzero entries in the vector, and 𝐾
0
is a preset

upper bound on sparsity level. The problem in (2) is a NP-
hard problem, which can be approximately solved by greedy
algorithms, such as orthogonal matching pursuit (OMP)
[13] and subspace pursuit (SP) [14], or relaxed to convex
programming [15]. In this paper, the OMP algorithm is
exploited to generate sparse coefficient vector. The OMP
algorithmaugments the support set by one index per iteration
until 𝐾

0
atoms are selected or the approximation error is

within a preset threshold.
Once the sparse coefficient vector is obtained, the class

label of y is determined by the minimal residual between y
and its approximation from each class of subdictionary:

Class (y) = arg min
𝑖=1,...,𝑀





y − A
𝑖
x̂
𝑖




2
, (3)

where A
𝑖
= [a
𝑖,1
, a
𝑖,2
, . . . , a

𝑖,𝑛𝑖
] ∈ R𝐵×𝑛𝑖 is the dataset of

training sample from class 𝑖 and x̂
𝑖
= [𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑛𝑖
]
𝑇 is

the coefficient vector associated with A
𝑖
.

2.2. KSRC. Kernel methods outperform the classical linear
algorithms by implicitly exploiting the nonlinear information
of given data [16]. It relies on the observation that a pixel in
kernel-induced feature space can be linearly represented in
terms of the training samples in same space [9]. Let y ∈ R𝐵

be the data point of interest and let 𝜙(y) be its representation
in kernel-induced feature space. Similar to the SRC, the linear
representation of 𝜙(y) in terms of training samples in kernel-
induced feature space can be formulated as

𝜙 (y) = [𝜙 (A
1
) , . . . , 𝜙 (A

𝑀
)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

A𝜙
[𝜙 (x
1
)
𝑇
, . . . , 𝜙 (x

𝑀
)
𝑇
]

𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

x𝜙

= A𝜙x𝜙,

(4)

whereA𝜙 is the training dictionary in kernel-induced feature
space and x𝜙 is the coefficient vector. The vector x𝜙 can be
recovered by solving

x̂𝜙 = argmin 




y − A𝜙x𝜙

2

s.t 




x𝜙
0
≤ 𝐾
0
.

(5)

Problem (5) can be approximately solved by kernelized
sparse recovery algorithms, such as the kernelized orthogonal
matching pursuit (KOMP) and kernelized subspace pursuit
(KSP). Implementation details of the KOMP and KSP can
be found in [17]. In this paper, the KOMP is used to solve
the problem with RBF kernel function. To avoid directly
evaluating the inner product in high-dimensional feature
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space, the kernel-based learning algorithm uses an effective
kernel trick to implement dot products in the feature space
without knowing the exact mapping function 𝜙.

Once the sparse vector x̂𝜙 is obtained, the residual asso-
ciated with 𝑖th subject in the feature space is then computed
by

𝑟
𝑖
(y) = 





𝜙 (y) − A𝜙

𝑖
x̂𝜙
𝑖







= √(𝑘 (y, y) − 2 (x̂𝜙
𝑖
)

𝑇

𝑘 (A𝜙
𝑖
, y) + (x̂𝜙

𝑖
)

𝑇

𝑘 (A𝜙
𝑖
,A𝜙
𝑖
) x̂𝜙
𝑖
)

= √(𝑘 (y, y) − 2 (x̂𝜙
𝑖
)

𝑇

(kA,y)
𝑖
+ (x̂𝜙
𝑖
)

𝑇

(KA)𝑖,𝑖 x̂
𝜙

𝑖
),

(6)

where kA,y and KA are, respectively, kernel tricks of target
dictionary with the query pixel and itself. The class label of
query pixel y is then determined as

Class (y) = arg min
𝑖=1,...,𝑀

𝑟
𝑖
(y) . (7)

Though SRC and KSRC have been proved to be powerful
approaches as shown in [8], the main idea of the SRC
and KSRC is only appropriate for extended surface target
classification such as plantation and geology. In this case,
the pixels in a large neighborhood are likely to consist of
similar materials, and different subjects are next to each other
without undesired subject (background) existing between
them. As a result, the spectral mixture only occurs along the
boundary, leading to the fact that most of the target pixels
are observed without corruption brought by background and
most of the training samples selected from dataset for dictio-
nary are pure. However, this probably would never happen
to small size target whose spectrum is almost mixed with
background.Thus, it may be unreliable for conventional SRC
and KSRC to use the residual information for validation and
classification. On the other hand, it is assumed that we have
hold all class of subjects present in the hyperspectral image
scene, including the number of classes and corresponding
training samples. In other words, the SRC and KSRC cannot
distinguish between small targets in hyperspectral image
scene for generally lacking training samples of undesired
class.

3. SRBBHC and the Kernelized Version

In this section, we introduce the proposed SRBBH model
based classification algorithm for HSI, which utilizes the
binary hypothesis for quality validation as well as the recon-
struction residuals by the two hypotheses for classification.
Moreover, a kernelized version of the proposed classifier
is also introduced for nonlinear classification in a high-
dimensional feature space.

3.1. SRBBHC. When employing SRC and KSRC for HSI, it
is assumed that the number of classes present in the image
scene 𝑀 is known. However, it is actually difficult to know
this information due to scene complexity. In many practical
situations, only the number of desired classes is available.

Fortunately, considering the regions of interest, such as
artificial target in nature background, what we wonder is
the class label of desired subjects, but not the class label of
all kinds of subjects. In other words, we need to detect and
then reject the undesired query sample before classification.
On the other hand, different from extended surface target,
the pixels of target with small size are almost mixed with
background spectrum. Detecting and classifying desired
subjects from themixed pixel are generally difficult, especially
when the background spectrum has a close or even larger
abundance than target. In addition, although the background
and target training samples have distinct spectral signatures
and lie in two different subspaces, the two subspaces are
usually not orthogonal, due to spectral variation [18]. In such
case, the reconstruction residual via corresponding target
training samples may be on the contrary larger than that
via background training samples, which will lead to mistake
target for background. Thus, it is no longer sufficient to
directly use the reconstruction residuals for validation and
classification.The SRBBHC solves these problems by utilizing
a binary hypothesismodel withmore reasonable dictionaries,
where the query pixel is, respectively, modeled with back-
ground dictionary under the null hypothesis and with union
dictionary under the alternative hypothesis. And then the
binary hypothesis is used for validation. In SRBBHC and
its kernelized version, the different impacts the background
dictionary and union dictionary have on reconstruction,
instead of residuals themselves, are used for validation and
classification. In a sense, the SRBBHC can be viewed as a
joint target detection and classification scheme, which firstly
detects the valid samples and then classifies them.

In detail, denote the union dictionary consisting of
both target training samples from class 𝑖 and background
training samples as A𝑢

𝑖
= [A𝑡

𝑖
,A𝑏], 𝑖 = 1, . . . ,𝑀, where

A𝑡
𝑖
is target subdictionary associated with class 𝑖 and A𝑏 is

background subdictionary. If y belongs to undesired class,
the spectrum lies in a low-dimensional subspace spanned by
the background training samples. As a result, the residuals
of different union dictionary A𝑢

𝑖
are similar to the residual

of background subdictionary A𝑏, that is, hypothesis 𝐻
0
. On

the other hand, if y belongs to class 𝑖, the union dictionary
A𝑢
𝑖
will give better representation, leading to smaller residual

than background subdictionary, that is, hypothesis 𝐻
1
. The

binary hypothesis for quality validation ismodeled as follows:

𝐻
0
:






y − A𝑏𝛾



≈




y − A𝑢
𝑖
𝛽
𝑖




𝑖=1,2,...,𝑀

, undesired class

𝐻
1
:






y − A𝑏𝛾


>




y − A𝑢
𝑖
𝛽
𝑖




𝑖=1,2,...,𝑀

, desired class,

(8)

where 𝛾 and 𝛽
𝑖
are coefficient vectors associated with A𝑏 and

A𝑢
𝑖
, respectively. In other words, the problem is reformed

into local binary classification problem, where the binary
hypothesis is used to decide if the test pixel is a valid sample
from one of the classes we desire.
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According to the sparse coding theory [15], the coefficient
vectors can be recovered by solving following minimization
problem with the same sparsity level:

�̂� = argmin 




x − A𝑏𝛾

2

s.t 



𝛾



0
≤ 𝐾
0
,

̂𝛽
𝑚
= argmin 




x − A𝑢
𝑖
𝛽
𝑖




2

s.t 



𝛽
𝑖




0
≤ 𝐾
0
.

(9)

Once the sparse coefficient vectors are obtained, the
semantic information can be directly extracted from the coef-
ficient vectors. The residuals of background subdictionary
and different union dictionaries are calculated as

𝑟
0
=






y − A𝑏�̂�


,

𝑟
𝑖
=






y − A𝑢
𝑖
̂𝛽
𝑖





𝑖=1,2,...,𝑀

.

(10)

If we decide the given y as a valid sample belongs
to class 𝑖, the union dictionary A𝑢

𝑖
will also give much

better representation than the other union dictionariesA𝑢
𝑗,𝑗 ̸=𝑖

,
leading to larger difference between 𝑟

𝑖
and 𝑟
0
. Then, y will be

labeled to the class with greatest difference between 𝑟
𝑖
and

𝑟
0
. Defining a vector R = (𝑟

0
− 𝑟
1
, 𝑟
0
− 𝑟
2
, . . . , 𝑟

0
− 𝑟
𝑀
), the

outputs of integrated detection and classification decision are
then made by

Detector (y) = max (R)

Class (y) = arg max
𝑖=1,...,𝑀

(𝑟
0
− 𝑟
𝑖
)

s.t Detector (y) ≥ 𝛿,

(11)

where 𝛿 is a threshold used for validation. When
Detector (y) < 𝛿, the query pixel will be labeled as undesired
class, that is, background. The threshold 𝛿 makes important
effects on validation and hence classification. However, in
this study, the threshold 𝛿 is determined experimentally due
to lack of parameter analysis theory. In our future work, we
will investigate how to automatically choose appropriate 𝛿
for different test datasets.

Considering the size of the desired subjects, the back-
ground dictionary is generated locally for each query pixel
through a dual concentric window centered at query pixel.
Only the samples in the outer region are involved in A𝑏. As
a result, the background dictionary is constructed adaptively
for each pixel and captures the background spectral signature
of the query pixel better. It is important to note that same
sparsity levelmust be adopted for each union dictionaryA𝑢

𝑖
to

make sure of the comparability of residuals of two hypotheses
in SRBBHC.

3.2. KSRBBHC. For a hyperspectral image scene, the spectral
mixing may be nonlinear due to the complex imaging
condition in many practical situations [19]. As a result,
the data structure may become complex and the problem
becomes no longer linearly separable. In such case, the linear
SRBBHC is not competent any more. Fortunately, kernel
methods can project the linearly nonseparable data into a
high-dimensional feature space in which those data become
more separable. Here we extend the proposed SRBBHC into
a kernel vision, referred to as KSRBBHC.

Similar to the KSRC, suppose that 𝜙(y) is the representa-
tion of query pixel in the high-dimensional feature space; the
SRBBH model becomes

𝐻
0
:






𝜙 (y) − A𝑏𝜙𝛾𝜙



≈






𝜙 (y) − A𝑢𝜙

𝑖
𝛽
𝜙

𝑖





𝑖=1,2,...,𝑀

, undesired class

𝐻
1
:






𝜙 (y) − A𝑏𝜙𝛾𝜙



>






𝜙 (y) − A𝑢𝜙

𝑖
𝛽
𝜙

𝑖





𝑖=1,2,...,𝑀

, desired class,

(12)

whereA𝑏𝜙 andA𝑢𝜙
𝑖
, respectively, result frommappingA𝑏 and

A𝜙
𝑖
into kernel-induced feature space by mapping function 𝜙

and 𝛾𝜙 and 𝛽𝜙
𝑖
are coefficient vectors, respectively, associated

with A𝑏𝜙 and A𝑢𝜙
𝑖
.

Employing the RBF kernel function, the residuals of
the kernel SRBBHC in terms of background dictionary and
different union dictionaries are, respectively, computed by

𝑟
𝜙

0
=






𝜙 (y) − A𝑏𝜙�̂�𝜙


= √(𝑘 (y, y) − 2 (�̂�𝜙)

𝑇

𝑘 (A𝑏𝜙, y) + (�̂�𝜙)
𝑇

𝑘 (A𝑏𝜙,A𝑏𝜙) �̂�𝜙),

𝑟
𝜙

𝑖
=









𝜙 (y) − A𝑢𝜙
𝑖

̂𝛽
𝜙

𝑖









= √(𝑘 (y, y) − 2 (̂𝛽
𝜙

𝑖
)

𝑇

𝑘 (A𝑢𝜙
𝑖
, y) + (̂𝛽

𝜙

𝑖
)

𝑇

𝑘 (A𝑢𝜙
𝑖
,A𝑢𝜙
𝑖
)
̂𝛽
𝜙

𝑖
)

𝑖=1,2,...,𝑀

,

(13)

where �̂�𝜙 and ̂𝛽
𝜙

𝑖
are the estimation for 𝛾𝜙 and 𝛽𝜙

𝑖
by KOMP.

Similarly, y will be labeled to the class with greatest
difference between 𝑟

𝜙

𝑖
and 𝑟

𝜙

0
. Defining a new vector R𝜙 =

(𝑟
𝜙

0
− 𝑟
𝜙

1
, 𝑟
𝜙

0
− 𝑟
𝜙

2
, . . . , 𝑟

𝜙

0
− 𝑟
𝜙

𝑀
), the outputs of integrated

detection and classification decision are then made by

Detector (y) = max (R𝜙)

Class (y) = arg max
𝑖=1,...,𝑀

(𝑟
𝜙

0
− 𝑟
𝜙

𝑖
)

s.t Detector (y) ≥ 𝛿
𝜙
,

(14)
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where 𝛿
𝜙 is also a threshold used for validation. When

Detector (y) < 𝛿
𝜙, the query pixel will be labeled as undesired

class, that is, background. Similar to SRBBHC, although
𝛿
𝜙 is important for validation and classification, it is also

determined experimentally.

4. Experimental Results

In this section, the classification performance of KSRBBHC
is evaluated and compared to the other four classifiers
(SVMC, SRC, KSRC, and SRBBHC), and RBF kernel func-
tion 𝜅(x

𝑖
, x
𝑗
) = exp (−‖x

𝑖
− x
𝑗
‖
2
/𝜎
2
) is used for KSRC

and KSRBBHC. The average recognition rate (ARR) and
overall recognition rate (ORR) are suggested as performance
parameters. The effectiveness of the proposed algorithms is
evaluated with two datasets: a synthetic dataset ROI-I and a
real dataset ROI-II, as shown in Figures 4 and 5.

The ROI-I is constructed by implanting five classes of
targets, which are, respectively, artificiality, clay, tree, plane,
and grass with a background scene size of 100 × 100 pixels
collected by theAirborneVisible Infrared Imaging Spectrom-
eter (AVIRIS) from San Diego, CA, USA. The image has
224 spectral channels (189 available) in wavelengths ranging
from 370 to 2510 nm. In detail, each class of target is linearly
mixed with background by varying abundance from 0.3
to 0.7 with step 0.1 in five small neighborhoods of size 2
× 2 pixels. In other words, the image contains 25 desired
subjects occupying 100 pixels. 4 unmixed samples per class
are randomly chosen for training, and the dual window sizes
𝜔in, 𝜔out are set as 3 × 3 and 9 × 9 according to the size of
desired target. We compute the ARRs and ORRs of KSRC
and KSRBBHC for ROI-I with varying kernel parameter 𝜎
and sparsity level𝐾

0
, as shown in Figure 1. One can see from

Figure 1 that the KSRC and KSRBBHC both are sensitive to
𝜎, while 𝐾

0
plays a nearly negligible role for the two kernel

vision algorithms when 𝜎 is fixed, especially when 𝜎 is fixed
as 0.001, 0.01, and 0.1. When 𝜎 is fixed as 10, the ARRs and
ORRs of KSRC and KSRBBHC both remain at a relatively
high level and change smoothly with 𝐾

0
. As a result, the

kernel parameter 𝜎 is set as 10 for the KSRC and KSRBBHC.
The ROI-II with the size of 100 × 100 pixels is a region

directly taken from the real AVIRIS image, San Diego. It
contains 3 classes of desired subjects occupying 317 pixels
and undesired subjects occupying 9683 pixels. For each class,
around 10% of the labeled samples are chosen randomly for
training. The dual window sizes 𝜔in, 𝜔out are set as 7 × 7
and 11 × 11 manually according to our previous work [20].
The ARRs and ORRs of KSRC and KSRBBHC with varying
𝜎 and 𝐾

0
for ROI-II are shown in Figure 2. In detail, as

shown in Figure 2(a), when 𝜎 is very small (0.001, 0.01) the
KSRC always has a poor performance. When 𝜎 is relatively
large, in general, the performance of KSRC increases with𝐾

0

smoothly, until the parameter reaches a certain level. Only
when 𝜎 is too large (𝜎 = 100), the performance of KSRC
fluctuates with the value of 𝐾

0
. For KSRBBHC, as shown

in Figure 2(b), the performance remains at high level at all
sparsity level when 𝜎 is small (0.001, 0.01, and 0.1). And the
performance increases with 𝐾

0
smoothly when 𝜎 is fixed as

1, until the parameter reaches a certain level. However, the
performance decreases with 𝐾

0
when 𝜎 is large (10, 100).

In a word, the experiment results for ROI-II also show that
the classification performance is more sensitive to kernel
parameter rather than sparsity level. Unlike the same optimal
kernel parameter setting in ROI-I, the kernel parameter 𝜎 is,
respectively, set as 10 for the KSRC and 0.01 for KSRBBHC in
ROI-II.

Figure 3 shows the classification performances of the
four sparsity-based classifiers with varying 𝐾

0
when kernel

parameter 𝜎 is, respectively, optimized for corresponding
algorithm. For the ROI-I, as shown in Figure 3(a), in
general, the experiment result shows that the classification
performances of four algorithms increase with 𝐾

0
, until the

parameter reaches a certain level, and then the performances
hold the line. As a result, the parameter 𝐾

0
is set as 8 to

balance the performance and complexity for all sparsity-
based classifiers in ROI-I. For the ROI-II, the classification
performances of SRC, KSRC, and SRBBHC increase with 𝐾

0

when the parameter is smaller than 6; then the performances
of SRC andKSRC keep increasing smoothly with𝐾

0
, whereas

the performance of SRBBHC reduces gradually. The reason
for this may be that only proper 𝐾

0
can lead a good

discriminative performance of sparsity-based classifiers. In
detail, for a very small 𝐾

0
, the residuals of background

dictionary and union dictionary are both large, which finally
weakens the classification performance. When 𝐾

0
is too

large, alongwith the nonorthogonality between desired target
and background, the solution may be dense and result in a
degraded discriminative power. Exactly as expected, for both
ROI-I and ROI-II the performance of KSRBBHC reaches a
good result with relatively small𝐾

0
and remains at high level

when 𝐾
0
increases (i.e., insensitive to 𝐾

0
). The parameter 𝐾

0

is set as 6 to balance the performance and complexity for all
sparsity-based classifiers in ROI-II.

After getting the optimal values of 𝐾
0
and 𝜎, the

experimental results of the five classifiers, averaged over
five independent realizations, are determined via ORR and
ARR, as shown in Tables 1 and 2. Because only the number
of desired classes is known, it should be noted that the
SVMC is designed as a local 𝑀 + 1-class (𝑀 = 5 for
ROI-I; 𝑀 = 3 for ROI-II) classifier with one-against-
all strategy, where the training samples from class 𝑀 + 1

(background) are adaptively collected for each query pixel in
local dual concentric window. One can observe from Tables
1 and 2 that both SRBBHC and KSRBBHC have significantly
improved the classification accuracy.One can also see that the
relationship of ORR and that of ARR between two classifiers
are sometimes mismatched.The reason for this phenomenon
may be that the total number of desired pixels is so small that
even modest increase of desired target classification accuracy
can lead to enormous increase on ARR but only small change
on ORR. For example, for the KSRBBHC in Table 1, the
classification accuracy for every single class is greater than or
equal to that of SRBBHC, leading to a greater ARR. However,
due to the small ratio but big absolute amount growth of
classification on background, the ORR of SRBBHC is turning
to greater than KSRBBHC. Considering the mismatch, the
best one of the five independent results for each classifier
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Figure 1: Effect of sparsity level𝐾
0
and RBF kernel parameter 𝜎 on performance of two kernel-based classifiers: (a) KSRC; (b) KSRBBHC for

ROI-I.

is chosen to estimate the performance intuitively, as shown
in Figures 4 and 5. The corresponding algorithm and ORR
are presented on the bottom of each map. One can clearly
see that both binary hypothesis model based classifiers
have significantly improved classification performance. The
SRBBHC not only classified the desired target exactly but
also avoid mistaking background to desired target effectively.
Furthermore, the KSRBBHCoutperforms all other classifiers.
In detail, for ROI-I, because of the mixture of desired target
and background, the SVMC, SRC, and KSRCmistake desired
target to background to a great extent. Severely, the SRC
mistakes abundant background pixels to desired target, while
the KSRBBHC and SRBBHC yield a superior performance.
For ROI-II, the SVMC barely classify the 2nd class of target

correctly because of lack of enough training sample and the
similarity between 2nd class of target and background. And
the conventional sparsity-based classifiers (SRC and KSRC)
lead to quite a number of misclassifications due to their weak
discriminative power. In a word, one can observe from the
experimental results that the SRBBH model based classifier
(SRBBHC) offers better performance than some traditional
techniques. Moreover, the kernelization of SRBBHC further
improves the performance.

5. Conclusion

In this paper, a sparse representation based binary hypothesis
model is proposed for target classification in HSI. And the
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Figure 2: Effect of sparsity level𝐾
0
and kernel parameter 𝜎 on classification performance of two kernel classifiers: (a) KSRC; (b) KSRBBHC

for ROI-II.

Table 1: Classification accuracy for the ROI-I using 4 unmixed
samples as training set.

Class SVMC SRC KSRC SRBBHC KSRBBHC
1 19 73 59 100 100
2 0 55 36 100 100
3 64 3 36 100 100
4 35 54 48 100 100
5 80 56 61 100 100
Background 100 91.42 100 99.73 99.92
ORR 99.40 86.54 99.49 99.73 99.92
ARR 49.67 59.01 57.33 99.95 99.98
Time 172.96 11.35 15.28 33.03 72.71

Table 2: Classification accuracy for the ROI-II using around 10%
labeled samples as training set.

Class SVMC SRC KSRC SRBBHC KSRBBHC
1 99.64 99.82 100 89.01 91.62
2 5.38 100 100 92.31 94.13
3 100 98.65 98.60 93.24 93.22
Background 98.52 98.16 98.15 99.81 99.69
ORR 97.66 96.81 97.55 98.65 99.07
ARR 75.38 97.20 98.05 91.46 94.11
Time 471.45 23.91 20.15 14.69 30.91

corresponding algorithm (SRBBHC) based on this model
is proposed for HSI classification. Furthermore, taking the
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Figure 3: Classification accuracies of four sparse-based classifierswith different𝐾
0
for two datasets: (a) ROI-I; (b) ROI-II when𝜎 is optimized.
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Figure 4: Classification maps of classifiers for ROI-I.
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Figure 5: Classification maps of classifiers for ROI-II.

nonlinearly separable and complex data structure into con-
sideration, the kernel version of SRBBHC (KSRBBHC) is then
proposed to solve the complicated classification problem.

The proposed algorithms are tested on two HSI datasets,
and the experimental results confirm the effectiveness of the
proposed SRBBHC and KSRBBHC. From the experiment
results, it can be concluded that (1) by collecting desired
background training samples adaptively, the proposed local
classifier solves the small target classification problem with-
out requiring the number of classes present in image scene;
(2) the SRBBH model enhances the discriminative power,
which results in a better classification performance; (3) the
kernelization further improves the classification performance
to a certain extent.

All bands are involved in the proposed method, while
the HSI may have more discriminative power at specific
spectral channels. And the performance of SRBBHC and
KSRBBHC is heavily influenced by background dictionary.
Thereby, the performance can be further improved by some
preprocess such as band selection and dictionary learning.
The effect of spatial information [21] on the performance of
SRBBHC and KSRBBHC will be investigated in our future
work. In addition, we will also investigate the selection of
appropriate validation threshold. By the way, backanalyzing

the distribution of vector R of desired pixels and undesired
pixels is a potential direction.
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