35 research outputs found

    Effect of in vitro gastrointestinal digestion on the chemical composition and antioxidant properties of Ginkgo biloba leaves decoction and commercial capsules

    Get PDF
    In this study Ginkgo biloba leaves (GBL) decoction and commercial capsules were digested using an in vitro model. Thirty-six active compounds were identified and quantified by HPLC-ESI-MS analysis based on the MS/MS patterns (precursor ions and product ions) and retention times, in comparison with reference standards. Most compounds in GBL showed a significant decrease during intestinal digestion, with an exception of vanillic acid and biflavonoids. Bioaccessibility values of chemical compositions varied between decoction and capsules samples. Also, significant reductions of total flavonoids and total phenolic content was observed after in vitro digestion. Both, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity decreased after gastric digestion, but increased during intestinal digestion. Nevertheless, different behaviour was observed in reducing antioxidant power (FRAP) assay. Compared to the pH of digestion, the influence of digestive enzymes on the chemical composition and antioxidant activity of GBL was relatively minor. Overall, these results may help provide a valid foundation for further investigations on bioactive compounds and the pharmacodynamics of GBL

    Diagnostic accuracy of autoverification and guidance system for COVID-19 RT-PCR results

    Get PDF
    Background: To date, most countries worldwide have declared that the pandemic of COVID-19 is over, while the WHO has not officially ended the COVID-19 pandemic, and China still insists on the personalized dynamic COVID-free policy. Large-scale nucleic acid testing in Chinese communities and the manual interpretation for SARS-CoV-2 nucleic acid detection results pose a huge challenge for labour, quality and turnaround time (TAT) requirements. To solve this specific issue while increase the efficiency and accuracy of interpretation, we created an autoverification and guidance system (AGS) that can automatically interpret and report the COVID-19 reverse transcriptase-polymerase chain reaction (RT-PCR) results relaying on computer-based autoverification procedure and then validated its performance in real-world environments. This would be conductive to transmission risk prediction, COVID-19 prevention and control and timely medical treatment for positive patients in the context of the predictive, preventive and personalized medicine (PPPM). Methods: A diagnostic accuracy test was conducted with 380,693 participants from two COVID-19 test sites in China, the Hong Kong Hybribio Medical Laboratory (n = 266,035) and the mobile medical shelter at a Shanghai airport (n = 114,658). These participants underwent SARS-CoV-2 RT-PCR from March 28 to April 10, 2022. All RT-PCR results were interpreted by laboratorians and by using AGS simultaneously. Considering the manual interpretation as gold standard, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were applied to evaluate the diagnostic value of the AGS on the interpretation of RT-PCR results. Results: Among the 266,035 samples in Hong Kong, there were 16,356 (6.15%) positive, 231,073 (86.86%) negative, 18,606 (6.99%) indefinite, 231,073 (86.86%, negative) no retest required and 34,962 (13.14%, positive and indefinite) retest required; the 114,658 samples in Shanghai consisted of 76 (0.07%) positive, 109,956 (95.90%) negative, 4626 (4.03%) indefinite, 109,956 (95.90%, negative) no retest required and 4702 (4.10%, positive and indefinite) retest required. Compared to the fashioned manual interpretation, the AGS is a procedure of high accuracy [99.96% (95%CI, 99.95–99.97%) in Hong Kong and 100% (95%CI, 100–100%) in Shanghai] with perfect sensitivity [99.98% (95%CI, 99.97–99.98%) in Hong Kong and 100% (95%CI, 100–100%) in Shanghai], specificity [99.87% (95%CI, 99.82–99.90%) in Hong Kong and 100% (95%CI, 99.92–100%) in Shanghai], PPV [99.98% (95%CI, 99.97–99.99%) in Hong Kong and 100% (95%CI, 99.99–100%) in Shanghai] and NPV [99.85% (95%CI, 99.80–99.88%) in Hong Kong and 100% (95%CI, 99.90–100%) in Shanghai]. The need for manual interpretation of total samples was dramatically reduced from 100% to 13.1% and the interpretation time fell from 53 h to 26 min in Hong Kong; while the manual interpretation of total samples was decreased from 100% to 4.1% and the interpretation time dropped from 20 h to 16 min at Shanghai. Conclusions: The AGS is a procedure of high accuracy and significantly relieves both labour and time from the challenge of large-scale screening of SARS-CoV-2 using RT-PCR. It should be recommended as a powerful screening, diagnostic and predictive system for SARS-CoV-2 to contribute timely the ending of the COVID-19 pandemic following the concept of PPPM

    Honeycomb-Patterned Hybrid Films and Their Template Applications via A Tunable Amphiphilic Block Polymer/Inorganic Precursor System

    Get PDF
    通讯作者地址: Li,L(通讯作者),Xiamen Univ,Coll Mat, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, Coll Mat, Xiamen 361005, Peoples R China 2. Xiamen Univ, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China 3. Chinese Acad Sci, Shanghai Inst Organ Chem, Shanghai 200032, Peoples R China 电子邮件地址: [email protected], we show a facile and versatile method-prepare highly ordered inorganic patterns on solid substrates by pyrolyzing UV cross-linked polymr/functional. precursor hybrid films. The crosslinked polymer matrix acted as structure-directing agent in a pyrolyzing process, whereas the functional precursor was converted into the skeleton of the micropatterns. The inorganic micropatterns could be further catalytically functionalized to grow CNT and ZnO nanorod arrays by simply changing different functional precursors. This simple technique offers new prospects in the field of micropatterns, nanolithography, and template.National Natural Science Foundation of China,50703032,20974089;Natural Science Foundation of Fujian Province,2009J06029; Ministry of Education of Chin

    Effect of in vitro gastrointestinal digestion on the chemical composition and antioxidant properties of Ginkgo biloba leaves decoction and commercial capsules

    No full text
    In this study Ginkgo biloba leaves (GBL) decoction and commercial capsules were digested using an in vitro model. Thirty-six active compounds were identified and quantified by HPLC-ESI-MS analysis based on the MS/MS patterns (precursor ions and product ions) and retention times, in comparison with reference standards. Most compounds in GBL showed a significant decrease during intestinal digestion, with an exception of vanillic acid and biflavonoids. Bioaccessibility values of chemical compositions varied between decoction and capsules samples. Also, significant reductions of total flavonoids and total phenolic content was observed after in vitro digestion. Both, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazo-line-6-sulfonic acid (ABTS) scavenging capacity decreased after gastric digestion, but increased during intestinal digestion. Nevertheless, different behaviour was observed in reducing antioxidant power (FRAP) assay. Compared to the pH of digestion, the influence of digestive enzymes on the chemical composition and antioxidant activity of GBL was relatively minor. Overall, these results may help provide a valid foundation for further investigations on bioactive compounds and the pharmacodynamics of GBL

    Effects of aflatoxins on growth performance and skeletal muscle of Cherry Valley meat male ducks

    No full text
    This study aims to evaluate the effects of aflatoxins on growth performance and skeletal muscle of Cherry Valley meat male ducks as they grow and develop. One-day-old healthy meat male ducks (n = 180) were randomly divided into 2 groups; there were 6 replicates in each group and 15 ducks in each replicate. The control group was fed a basic diet, and the experimental group was fed a mold-exposed cottonseed meal diet containing aflatoxins instead of normal cottonseed meal. The experimental period was 35 days, and divided into two stages of 1 to 14 days (early stage) and 15 to 35 days (late stage). During the experimental period, live weight, breast muscle weight and thigh muscle weight of meat male ducks were measured weekly. Results showed as follows: 1) aflatoxins contained in the mold-exposed diet significantly reduced daily weight gain and feed intake, and increased feed-to-gain ratio of meat male ducks at different ages (P < 0.05); 2) the Gompertz equation (Wt = Wm exp {−exp [−B (t − t*)]}) could successfully fit the growth curve and growth and developmental patterns of skeletal muscles of Cherry Valley meat male ducks (R2 ≥ 0.97); 3) the relationship between chest muscle and live weight was the best described by a power regression and polynomial regression (R2 = 0.99); the relationship between live weight and thigh muscle weight was the best described by linear regression, polynomial regression, and power regression (R2 = 0.99); 4) aflatoxins in the mold-exposed diet significantly reduced live weight, breast muscle weight and thigh muscle weight of Cherry Valley meat male ducks at various ages; and 5) aflatoxins delayed the age at peak in growth of meat male ducks, and reduced weights at the peak for breast muscle, thigh muscle and whole body as well as the maximal daily weight gain. In summary, aflatoxins delayed growth of Cherry Valley meat male ducks and development of skeletal muscle

    RIPK3-Mediated Necroptosis and Neutrophil Infiltration Are Associated with Poor Prognosis in Patients with Alcoholic Cirrhosis

    No full text
    Alcoholic cirrhosis is an end-stage liver disease with impaired survival and often requires liver transplantation. Recent data suggests that receptor-interacting protein kinase-3- (RIPK3-) mediated necroptosis plays an important role in alcoholic cirrhosis. Additionally, neutrophil infiltration is the most characteristic pathologic hallmark of alcoholic hepatitis. Whether RIPK3 level is correlated with neutrophil infiltration or poor prognosis in alcoholic cirrhotic patients is still unknown. We aimed to determine the correlation of RIPK3 and neutrophil infiltration with the prognosis in the end-stage alcoholic cirrhotic patients. A total of 20 alcoholic cirrhotic patients subjected to liver transplantation and 5 normal liver samples from control patients were retrospectively enrolled in this study. Neutrophil infiltration and necroptosis were assessed by immunohistochemical staining for myeloperoxidase (MPO) and RIPK3, respectively. The noninvasive score system (model for end-stage liver disease (MELD)) and histological score systems (Ishak, Knodell, and ALD grading and ALD stage) were used to evaluate the prognosis. Neutrophil infiltration was aggravated in patients with a high MELD score (≥32) in the liver. The MPO and RIPK3 levels in the liver were positively related to the Ishak score. The RIPK3 was also significantly and positively related to the Knodell score. In conclusion, RIPK3-mediated necroptosis and neutrophil-mediated alcoholic liver inflammatory response are highly correlated with poor prognosis in patients with end-stage alcoholic cirrhosis. RIPK3 and MPO might serve as potential predictors for poor prognosis in alcoholic cirrhotic patients

    Paecilomyces variotii: A Fungus Capable of Removing Ammonia Nitrogen and Inhibiting Ammonia Emission from Manure.

    No full text
    Ammonia (NH3) emissions from animal manure are a significant environmental and public concern. Despite the numerous studies regarding NH3 emissions from manure, few of them have considered microbial nitrification approaches, especially fungal nitrification. In this study, a filamentous fungus was isolated from chicken manure and was used for nitrification. The species was Paecilomyces variotii by morphological characteristics and 18S rDNA gene sequencing. It played the biggest role in the removal of ammonium at pH 4.0-7.0, C/N ratio of 10-40, temperature of 25-37°C, shaking speed of 150 rpm, and with glucose as the available carbon source. Further analysis revealed that all ammonium was removed when the initial ammonium concentration was less than 100 mg/L; 40% ammonium was removed when the initial ammonium concentration was 1100 mg/L. The results showed that the concentration of ammonia from chicken manure with strain Paecilomyces variotii was significantly lower than that in the control group. We concluded that Paecilomyces variotii has good potential for future applications in in situ ammonium removal as well as ammonia emissions control from poultry manure

    Cerium modified MnTiO x

    No full text

    Mesoporous double-perovskite LaAMnNiO 6

    No full text
    corecore