69 research outputs found
SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics
<p>Abstract</p> <p>Background</p> <p>Many programs have been developed to identify transcription factor binding sites. However, most of them are not able to infer two-word motifs with variable spacer lengths. This case is encountered for RNA polymerase Sigma (<it>σ</it>) Factor Binding Sites (SFBSs) usually composed of two boxes, called -35 and -10 in reference to the transcription initiation point. Our goal is to design an algorithm detecting SFBS by using combinational and statistical constraints deduced from biological observations.</p> <p>Results</p> <p>We describe a new approach to identify SFBSs by comparing two related bacterial genomes. The method, named SIGffRid (SIGma Factor binding sites Finder using R'MES to select Input Data), performs a simultaneous analysis of pairs of promoter regions of orthologous genes. SIGffRid uses a prior identification of over-represented patterns in whole genomes as selection criteria for potential -35 and -10 boxes. These patterns are then grouped using pairs of short seeds (of which one is possibly gapped), allowing a variable-length spacer between them. Next, the motifs are extended guided by statistical considerations, a feature that ensures a selection of motifs with statistically relevant properties. We applied our method to the pair of related bacterial genomes of <it>Streptomyces coelicolor </it>and <it>Streptomyces avermitilis</it>. Cross-check with the well-defined SFBSs of the SigR regulon in <it>S. coelicolor </it>is detailed, validating the algorithm. SFBSs for HrdB and BldN were also found; and the results suggested some new targets for these <it>σ </it>factors. In addition, consensus motifs for BldD and new SFBSs binding sites were defined, overlapping previously proposed consensuses. Relevant tests were carried out also on bacteria with moderate GC content (i.e. <it>Escherichia coli</it>/<it>Salmonella typhimurium </it>and <it>Bacillus subtilis</it>/<it>Bacillus licheniformis </it>pairs). Motifs of house-keeping <it>σ </it>factors were found as well as other SFBSs such as that of SigW in <it>Bacillus </it>strains.</p> <p>Conclusion</p> <p>We demonstrate that our approach combining statistical and biological criteria was successful to predict SFBSs. The method versatility autorizes the recognition of other kinds of two-box regulatory sites.</p
SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics
<p>Abstract</p> <p>Background</p> <p>Many programs have been developed to identify transcription factor binding sites. However, most of them are not able to infer two-word motifs with variable spacer lengths. This case is encountered for RNA polymerase Sigma (<it>σ</it>) Factor Binding Sites (SFBSs) usually composed of two boxes, called -35 and -10 in reference to the transcription initiation point. Our goal is to design an algorithm detecting SFBS by using combinational and statistical constraints deduced from biological observations.</p> <p>Results</p> <p>We describe a new approach to identify SFBSs by comparing two related bacterial genomes. The method, named SIGffRid (SIGma Factor binding sites Finder using R'MES to select Input Data), performs a simultaneous analysis of pairs of promoter regions of orthologous genes. SIGffRid uses a prior identification of over-represented patterns in whole genomes as selection criteria for potential -35 and -10 boxes. These patterns are then grouped using pairs of short seeds (of which one is possibly gapped), allowing a variable-length spacer between them. Next, the motifs are extended guided by statistical considerations, a feature that ensures a selection of motifs with statistically relevant properties. We applied our method to the pair of related bacterial genomes of <it>Streptomyces coelicolor </it>and <it>Streptomyces avermitilis</it>. Cross-check with the well-defined SFBSs of the SigR regulon in <it>S. coelicolor </it>is detailed, validating the algorithm. SFBSs for HrdB and BldN were also found; and the results suggested some new targets for these <it>σ </it>factors. In addition, consensus motifs for BldD and new SFBSs binding sites were defined, overlapping previously proposed consensuses. Relevant tests were carried out also on bacteria with moderate GC content (i.e. <it>Escherichia coli</it>/<it>Salmonella typhimurium </it>and <it>Bacillus subtilis</it>/<it>Bacillus licheniformis </it>pairs). Motifs of house-keeping <it>σ </it>factors were found as well as other SFBSs such as that of SigW in <it>Bacillus </it>strains.</p> <p>Conclusion</p> <p>We demonstrate that our approach combining statistical and biological criteria was successful to predict SFBSs. The method versatility autorizes the recognition of other kinds of two-box regulatory sites.</p
Prion Formation and Polyglutamine Aggregation Are Controlled by Two Classes of Genes
Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps−] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.National Institutes of Health (U.S.) (grant GM56350)National Institutes of Health (U.S.) (NSRA F32 postdoctoral fellowship GM072340)National Institutes of Health (U.S.) (grant GM25874)Howard Hughes Medical Institut
Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking
The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data
Recommended from our members
Minimum Information about a Biosynthetic Gene cluster
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.Chemistry and Chemical Biolog
- …