5 research outputs found

    Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells.</p> <p>Methods</p> <p>Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay.</p> <p>Results</p> <p>DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure.</p> <p>Conclusion</p> <p>DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.</p

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    The Identification of Hereditary and Environmental Determinants of Frailty in a Cohort of UK Twins

    No full text
    Our study examines the contribution of genetic and environmental factors (both shared and unique) to frailty, measured using the Rockwood Frailty Index (FI) in a sample of twins from the St Thomas’ UK Adult Twin Registry. The FI was based on 39 items of potential health deficit. Study participants were 3,375 volunteer adult twins (840 monozygotic and 802 dizygotic twin-pairs) 40.0–84.5 years old. First, we used structural equation modeling to estimate the relative contribution of genetics and of the shared and unique environment to variance in FI adjusted for age. In a second analysis, multiple linear regression was used to examine variance in FI as a function of father's occupational class (a component of shared environment and a measure of childhood socioeconomic status [SES]), adjusting for age, birth weight, marital status, and health behaviors (smoking, alcohol consumption, and physical activity). Statistical analyses were conducted using IBM SPSS® Version 22 software and Mx open source software. Findings showed that 45% (95% confidence intervals [CIs] 30–53%) of the inter-individual variation in FI was heritable and 52% (95% CIs 47–57%) was due to the individual's unique environment. Multiple linear regression also showed a small but statistically significant inverse association between father's occupational class and FI, mediated by one's own educational attainment and birth weight. Our results indicate that frailty is both genetically and environmentally determined. Thus, its prevention and management call for a multifaceted approach that includes addressing deleterious environmental factors, some of which, like childhood SES, may act across the life course.</jats:p
    corecore