21 research outputs found

    An international validation study of the IL-2 Luc assay for evaluating the potential immunotoxic effects of chemicals on T cells and a proposal for reference data for immunotoxic chemicals

    Get PDF
    To evaluate the immunotoxic effects of xenobiotics, we have established the Multi-ImmunoTox assay, in which three stable reporter cell lines are used to evaluate the effects of chemicals on the IL-2, IFN-\u3b3, IL-1\u3b2 and IL-8 promoters. Here, we report the official validation study of the IL-2 luciferase assay (IL-2 Luc assay). In the Phase I study that evaluated five coded chemicals in three sets of experiments, the average within-laboratory reproducibility was 86.7%. In the Phase II study, 20 coded chemicals were evaluated at multiple laboratories. In the combined results of the Phase I and II studies, the between-laboratory reproducibility was 80.0%. These results suggested that the IL-2 Luc assay was reproducible both between and within laboratories. To determine the predictivity, we collected immunotoxicological information and constructed the reference data by classifying the chemical into immunotoxic compounds targeting T cells or others according to previously reported criteria. When compared with the reference data, the average predictivity of the Phase I and II studies was 75.0%, while that of additional 60 chemicals examined by the lead laboratory was 82.5%. Although the IL-2 Luc assay alone is not sufficient to predict immunotoxicity, it will be a useful tool when combined with other immune tests

    Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts

    Get PDF
    We have found that a water-soluble alkaline-digested form of eggshell membrane (ASESM) can provide an extracellular matrix (ECM) environment for human dermal fibroblast cells (HDF) in vitro. Avian eggshell membrane (ESM) has a fibrous-meshwork structure and has long been utilized as a Chinese medicine for recovery from burn injuries and wounds in Asian countries. Therefore, ESM is expected to provide an excellent natural material for biomedical use. However, such applications have been hampered by the insolubility of ESM proteins. We have used a recently developed artificial cell membrane biointerface, 2-methacryloyloxyethyl phosphorylcholine polymer (PMBN) to immobilize ASESM proteins. The surface shows a fibrous structure under the atomic force microscope, and adhesion of HDF to ASESM is ASESM-dose-dependent. Quantitative mRNA analysis has revealed that the expression of type III collagen, matrix metalloproteinase-2, and decorin mRNAs is more than two-fold higher when HDF come into contact with a lower dose ASESM proteins immobilized on PMBN surface. A particle-exclusion assay with fixed erythrocytes has visualized secreted water-binding molecules around the cells. Thus, HDF seems to possess an ECM environment on the newly designed PMBN-ASESM surface, and future applications of the ASESM-PMBN system for biomedical use should be of great interest

    Proteomic Approaches for Studying the Phases of Wound Healing

    No full text
    © 2009, Springer Berlin Heidelberg. Proteome level information is necessary to understand the function of specific cell types and their roles in health and disease. Proteomics is a rapidly developing field with a wide range of applications in wound healing. The ability to use proteomics to assess the wound healing process would have many benefits, including earlier evidence of healing and better understanding of how different treatments affect the wound at the protein level. The basis of what is known about the chronic wound proteome is based on results from a broad collection of studies utilizing a number of different proteomic techniques on fluids and tissues from wounds with different etiologies. The identification of biomarkers associated with healing or delayed healing in chronic wounds could have great significance in the use of current treatments, as well as in the development of new therapeutic interventions

    Advances in the physics studies for the JT-60SA tokamak exploitation and research plan

    No full text
    | openaire: EC/H2020/633053/EU//EUROfusionJT-60SA, the largest tokamak that will operate before ITER, has been designed and built jointly by Japan and Europe, and is due to start operation in 2020. Its main missions are to support ITER exploitation and to contribute to the demonstration fusion reactor machine and scenario design. Peculiar properties of JT-60SA are its capability to produce long-pulse, high-β, and highly shaped plasmas. The preparation of the JT-60SA Research Plan, plasma scenarios, and exploitation are producing physics results that are not only relevant to future JT-60SA experiments, but often constitute original contributions to plasma physics and fusion research. Results of this kind are presented in this paper, in particular in the areas of fast ion physics, high-beta plasma properties and control, and non-linear edge localised mode stability studies.Peer reviewe

    Expression of growth mediators in the gingival crevicular fluid of patients with aggressive periodontitis undergoing periodontal surgery

    No full text
    Objectives: To describe changes in growth factor mediators in the gingival crevicular fluid (GCF) of patients with aggressive periodontitis (AgP) undergoing regenerative (GTR) and access flap (AF) surgery. Materials and methods: This was a 12-month, single-blind, split-mouth RCT involving 18 AgP patients with a bilateral intrabony defect which was treated with GTR or AF. GCF was collected prior to surgery and at subsequent follow-up visits from 3 days to 12 months post-operatively, and the levels of angiopoietin-1 (Ang-1), vascular-endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), bone morphogenetic protein-2 (BMP-2), osteoprotegerin (OPG), tissue inhibitor of metalloproteinase 1 (TIMP-1), keratinocyte growth factor (KGF) and platelet-derived growth factor-AB (PDGF-AB) were measured. At baseline, 6 and 12 months post-surgery, periodontal clinical parameters were evaluated. ANOVA was applied to test for differences in the amount of mediators (p < 0.05). Results: Higher amounts of BMP-2 and OPG and a higher area under the curve (AUC) of KGF at the GTR versus AF sites were observed. The maximum change in the amount of KGF correlated significantly with periodontal clinical parameters at the GTR sites at 6 and 12 months. The AUC over 30 days of the amount of Ang-1, VEGF and KGF significantly correlated with periodontal clinical parameters at the AF sites at 6 months. Conclusions: AF and GTR differentially affected the profile of the growth mediators in GCF, and significant correlations between certain GCF mediators and periodontal clinical outcomes were identified. Clinical relevance: GCF components represent attractive prognostic markers for periodontal tissues undergoing repair or regeneration. However, the available evidence is not robust enough to suggest the use of a specific marker, and future adequately powered studies are warranted to identify the most relevant mediators that could be applied in clinical practice
    corecore