6 research outputs found

    BMP signaling promotes the growth of primary human colon carcinomas in vivo

    No full text
    Human colon carcinomas (CCs) represent a growing worldwide problem. One of the pathways that has been negatively implicated in the genesis of CCs is triggered by bone morphogenetic protein (BMP) ligands, which activate BMP receptors leading to the function of SMAD proteins in the nucleus. BMP signaling is altered in familial human polyposis, and mice with compromised BMP signaling in the intestine develop tumors. Here, we have re-evaluated the presence and roles of BMP signaling in advanced sporadic human CCs, using both primary tumors and established cell lines, and directly modulating BMP pathway activity in a cell-autonomous manner using constitutively active and dominant-negative BMP receptor Ib forms. We find evidence for active endogenous BMP signaling in all primary CC samples and for its role in promoting primary CC tumor growth and CC cell survival and proliferation in vivo in xenografts. In vitro, we also document autonomous and non-autonomous effects of enhanced BMP receptor activity on gap closure in culture, suggesting possible roles in invasion. Caution should thus be exerted in trying to augment or restore its activity for therapeutic purposes. In contrast, we raise the possibility that blockade of BMP signaling might have beneficial effects against at least a subset of advanced colon cancers

    The river blindness drug I

    No full text
    Constitutive activation of canonical WNT-TCF signaling is implicated in multiple diseases, including intestine and lung cancers, but there are no WNT-TCF antagonists in clinical use. We have performed a repositioning screen for WNT-TCF response blockers aiming to recapitulate the genetic blockade afforded by dominant-negative TCF. We report that Ivermectin inhibits the expression of WNT-TCF targets, mimicking dnTCF, and that its low concentration effects are rescued by direct activation by TCF(VP)(16). Ivermectin inhibits the proliferation and increases apoptosis of various human cancer types. It represses the levels of C-terminal ÎČ-CATENIN phosphoforms and of CYCLIN D1 in an okadaic acid-sensitive manner, indicating its action involves protein phosphatases.In vivo, Ivermectin selectively inhibits TCF-dependent, but not TCF-independent, xenograft growth without obvious side effects. Analysis of single semi-synthetic derivatives highlights Selamectin, urging its clinical testing and the exploration of the macrocyclic lactone chemical space. Given that Ivermectin is a safe anti-parasitic agent used by > 200 million people against river blindness, our results suggest its additional use as a therapeutic WNT-TCF pathway response blocker to treat WNT-TCF-dependent diseases including multiple cancers

    The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT‐TCF pathway responses in human cancer

    No full text
    Abstract Constitutive activation of canonical WNT‐TCF signaling is implicated in multiple diseases, including intestine and lung cancers, but there are no WNT‐TCF antagonists in clinical use. We have performed a repositioning screen for WNT‐TCF response blockers aiming to recapitulate the genetic blockade afforded by dominant‐negative TCF. We report that Ivermectin inhibits the expression of WNT‐TCF targets, mimicking dnTCF, and that its low concentration effects are rescued by direct activation by TCFVP16. Ivermectin inhibits the proliferation and increases apoptosis of various human cancer types. It represses the levels of C‐terminal ÎČ‐CATENIN phosphoforms and of CYCLIN D1 in an okadaic acid‐sensitive manner, indicating its action involves protein phosphatases. In vivo, Ivermectin selectively inhibits TCF‐dependent, but not TCF‐independent, xenograft growth without obvious side effects. Analysis of single semi‐synthetic derivatives highlights Selamectin, urging its clinical testing and the exploration of the macrocyclic lactone chemical space. Given that Ivermectin is a safe anti‐parasitic agent used by > 200 million people against river blindness, our results suggest its additional use as a therapeutic WNT‐TCF pathway response blocker to treat WNT‐TCF‐dependent diseases including multiple cancers

    The river blindness drug Ivermectin and related macrocyclic lactones inhibit WNT-TCF pathway responses in human cancer

    No full text
    Constitutive activation of canonical WNT-TCF signaling is implicated in multiple diseases, including intestine and lung cancers, but there are no WNT-TCF antagonists in clinical use. We have performed a repositioning screen for WNT-TCF response blockers aiming to recapitulate the genetic blockade afforded by dominant-negative TCF. We report that Ivermectin inhibits the expression of WNT-TCF targets, mimicking dnTCF, and that its low concentration effects are rescued by direct activation by TCF(VP16). Ivermectin inhibits the proliferation and increases apoptosis of various human cancer types. It represses the levels of C-terminal ÎČ-CATENIN phosphoforms and of CYCLIN D1 in an okadaic acid-sensitive manner, indicating its action involves protein phosphatases. In vivo, Ivermectin selectively inhibits TCF-dependent, but not TCF-independent, xenograft growth without obvious side effects. Analysis of single semi-synthetic derivatives highlights Selamectin, urging its clinical testing and the exploration of the macrocyclic lactone chemical space. Given that Ivermectin is a safe anti-parasitic agent used by > 200 million people against river blindness, our results suggest its additional use as a therapeutic WNT-TCF pathway response blocker to treat WNT-TCF-dependent diseases including multiple cancers

    NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53

    No full text
    A cohort of genes associated with embryonic stem (ES) cell behaviour, including NANOG, are expressed in a number of human cancers. They form an ES-like signature we first described in glioblastoma multiforme (GBM), a highly invasive and incurable brain tumour. We have also shown that HEDGEHOG-GLI (HH-GLI) signalling is required for GBM growth, stem cell expansion and the expression of this (ES)-like stemness signature. Here, we address the function of NANOG in human GBMs and its relationship with HH-GLI activity. We find that NANOG modulates gliomasphere clonogenicity, CD133+ stem cell cell behavior and proliferation, and is regulated by HH-GLI signalling. However, GLI1 also requires NANOG activity forming a positive loop, which is negatively controlled by p53 and vice versa. NANOG is essential for GBM tumourigenicity in orthotopic xenografts and it is epistatic to HH-GLI activity. Our data establish NANOG as a novel HH-GLI mediator essential for GBMs. We propose that this function is conserved and that tumour growth and stem cell behaviour rely on the status of a functional GLI1-NANOG-p53 network
    corecore