327 research outputs found

    Compound heterozygous SCN5A gene mutations in asymptomatic Brugada syndrome child

    Get PDF
    BACKGROUND. Loss-of-function mutations in the SCN5A gene, encoding the cardiac Nav1.5 sodium channel, have been previously associated with Brugada syndrome (BrS). Despite the low prevalence of the disease, we identified a patient carrying two SCN5A mutations. We aimed at establishing a correlation between genotype, clinical phenotype and in vitro sodium current.MATERIALS AND METHODS. A 3 years old boy presented with right bundle branch block and ST-segment elevation. Genetic analysis and electrophysiology studies in transfected HEK293 cells were performed to identify possibly disease-causing variants and assess their effect on sodium channel function.RESULTS. Two SCN5A variants were identified: a new frameshift deletion causing premature truncation of the putative protein (c.3258_3261del4) and a missense substitution (p.F1293S). In vitro studies revealed that the truncated mutant did not produce functional channels and decreased total sodium current when co-expressed with p.F1293S channels compared to p.F1293S alone. In addition, p.F1293S channels presented with a steep slope of steady-state activation voltage-dependency, which was shifted towards more positive potentials by the co-expression with the truncated channel. p.F1293S channels also showed shift towards more positive potentials of the steady-state inactivation both alone and co-expressed with the deletion mutant.CONCLUSIONS. Our data identified a severe reduction of sodium channel current associated with two distinct SCN5A changes. However, all mutation carriers were asymptomatic and BrS ECG was observed only transiently in the compound heterozygous subject. These observations underline the difficulty of genotype/phenotype correlations in BrS patients and support the idea of a polygenic disorder, where different mutations and variants can contribute to the clinical phenotype

    Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction

    Get PDF
    BACKGROUND: Defects of cytoarchitectural proteins can cause left ventricular noncompaction, which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LIM domain-binding protein 3-encoding Z-band alternatively spliced PDZ motif gene (ZASP) in a patient with left ventricular noncompaction and conduction disturbances. We sought to investigate the role of p.D117N mutation in the LBD3 NM_001080114.1 isoform (ZASP1-D117N) for the regulation of cardiac sodium channel (Na(v)1.5) that plays an important role in the cardiac conduction system. METHODS AND RESULTS: Effects of ZASP1-wild-type and ZASP1-D117N on Na(v)1.5 were studied in human embryonic kidney-293 cells and neonatal rat cardiomyocytes. Patch-clamp study demonstrated that ZASP1-D117N significantly attenuated I(Na) by 27% in human embryonic kidney-293 cells and by 32% in neonatal rat cardiomyocytes. In addition, ZASP1-D117N rightward shifted the voltage-dependent activation and inactivation in both systems. In silico simulation using Luo-Rudy phase 1 model demonstrated that altered Na(v)1.5 function can reduce cardiac conduction velocity by 28% compared with control. Pull-down assays showed that both wild-type and ZASP1-D117N can complex with Na(v)1.5 and telethonin/T-Cap, which required intact PDZ domains. Immunohistochemical staining in neonatal rat cardiomyocytes demonstrates that ZASP1-D117N did not significantly disturb the Z-line structure. Disruption of cytoskeletal networks with 5-iodonaphthalene-1-sulfonyl homopiperazine and cytochalasin D abolished the effects of ZASP1-D117N on Na(v)1.5. CONCLUSIONS: ZASP1 can form protein complex with telethonin/T-Cap and Na(v)1.5. The left ventricular noncompaction-specific ZASP1 mutation can cause loss of function of Na(v)1.5, without significant alteration of the cytoskeletal protein complex. Our study suggests that electric remodeling can occur in left ventricular noncompaction subject because of a direct effect of mutant ZASP on Na(v)1.5

    Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum Maxim. has antidiabetic effects on high-fat-fed and streptozotocin-treated mice via increasing glycogen synthesis by regulation of PI3K/Akt/GSK-3β/GS signaling

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia. The fruits of Zanthoxylum bungeanum Maxim. is a common spice and herbal medicine in China, and hydroxy-α-sanshool (HAS) is the most abundant amide in Z. bungeanum and reported to have significant hypoglycemic effects. The purpose of this study was to evaluate the ameliorative effects of HAS on T2DM and the potential mechanisms responsible for those effects. An acute toxicity test revealed the median lethal dose (LD50) of HAS is 73 mg/kg. C57BL/6 J mice were fed a high-fat diet and given an intraperitoneal injection of streptozotocin (STZ) to induce T2DM in mice to evaluate the hypoglycemic effects of HAS. The results showed that HAS significantly reduced fasting blood glucose, reduced pathological changes in the liver and pancreas, and increased liver glycogen content. In addition, glucosamine (GlcN)-induced HepG2 cells were used to establish an insulin resistance cell model and explore the molecular mechanisms of HAS activity. The results demonstrated that HAS significantly increases glucose uptake and glycogen synthesis in HepG2 cells and activates the PI3K/Akt pathway in GlcN-induced cells, as well as increases GSK-3β phosphorylation, suppresses phosphorylation of glycogen synthase (GS) and increases glycogen synthesis in liver cells. Furthermore, these effects of HAS were blocked by the PI3K inhibitor LY294002. The results of our study suggest that HAS reduces hepatic insulin resistance and increases hepatic glycogen synthesis by activating the PI3K/Akt/GSK-3β/GS signaling pathway
    • …
    corecore