525 research outputs found

    Location and Level of Etk Expression in Neurons Are Associated with Varied Severity of Traumatic Brain Injury

    Get PDF
    Much recent research effort in traumatic brain injury (TBI) has been devoted to the discovery of a reliable biomarker correlating with severity of injury. Currently, no consensus has been reached regarding a representative marker for traumatic brain injury. In this study, we explored the potential of epithelial/endothelial tyrosine kinase (Etk) as a novel marker for TBI.TBI was induced in Sprague Dawley (SD) rats by controlled cortical impact. Brain tissue samples were analyzed by Western blot, Q-PCR, and immunofluorescence staining using various markers including glial fibrillary acidic protein, and epithelial/endothelial tyrosine kinase (Etk). Results show increased Etk expression with increased number and severity of impacts. Expression increased 2.36 to 7-fold relative to trauma severity. Significant upregulation of Etk appeared at 1 hour after injury. The expression level of Etk was inversely correlated with distance from injury site. Etk and trauma/inflammation related markers increased post-TBI, while other tyrosine kinases did not.The observed correlation between Etk level and the number of impacts, the severity of impact, and the time course after impact, as well as its inverse correlation with distance away from injury site, support the potential of Etk as a possible indicator of trauma severity

    The Potential Economic Value of a Trypanosoma cruzi (Chagas Disease) Vaccine in Latin America

    Get PDF
    The substantial burden of Chagas disease, especially in Latin America, and the limitations of currently available treatment and control strategies have motivated the development of a Trypanosoma cruzi (T. cruzi) vaccine. Evaluating a vaccine's potential economic value early in its development can answer important questions while the vaccine's key characteristics (e.g., vaccine efficacy targets, price points, and target population) can still be altered. This can assist vaccine scientists, manufacturers, policy makers, and other decision makers in the development and implementation of the vaccine. We developed a computational economic model to determine the cost-effectiveness of introducing a T. cruzi vaccine in Latin America. Our results showed vaccination to be very cost-effective, in many cases providing both cost savings and health benefits, even at low infection risk and vaccine efficacy. Moreover, our study suggests that a vaccine may actually โ€œpay for itselfโ€, as even a relatively higher priced vaccine will generate net cost savings for a purchaser (e.g., a country's ministry of health). These findings support continued investments in and efforts toward the development of a human T. cruzi vaccine

    A Simple Method for Analyzing Exome Sequencing Data Shows Distinct Levels of Nonsynonymous Variation for Human Immune and Nervous System Genes

    Get PDF
    To measure the strength of natural selection that acts upon single nucleotide variants (SNVs) in a set of human genes, we calculate the ratio between nonsynonymous SNVs (nsSNVs) per nonsynonymous site and synonymous SNVs (sSNVs) per synonymous site. We transform this ratio with a respective factor f that corrects for the bias of synonymous sites towards transitions in the genetic code and different mutation rates for transitions and transversions. This method approximates the relative density of nsSNVs (rdnsv) in comparison with the neutral expectation as inferred from the density of sSNVs. Using SNVs from a diploid genome and 200 exomes, we apply our method to immune system genes (ISGs), nervous system genes (NSGs), randomly sampled genes (RSGs), and gene ontology annotated genes. The estimate of rdnsv in an individual exome is around 20% for NSGs and 30โ€“40% for ISGs and RSGs. This smaller rdnsv of NSGs indicates overall stronger purifying selection. To quantify the relative shift of nsSNVs towards rare variants, we next fit a linear regression model to the estimates of rdnsv over different SNV allele frequency bins. The obtained regression models show a negative slope for NSGs, ISGs and RSGs, supporting an influence of purifying selection on the frequency spectrum of segregating nsSNVs. The y-intercept of the model predicts rdnsv for an allele frequency close to 0. This parameter can be interpreted as the proportion of nonsynonymous sites where mutations are tolerated to segregate with an allele frequency notably greater than 0 in the population, given the performed normalization of the observed nsSNV to sSNV ratio. A smaller y-intercept is displayed by NSGs, indicating more nonsynonymous sites under strong negative selection. This predicts more monogenically inherited or de-novo mutation diseases that affect the nervous system

    Photodisintegration of 4^4He into p+t

    Full text link
    The two-body photodisintegration of 4^4He into a proton and a triton has been studied using the CEBAF Large-Acceptance Spectrometer (CLAS) at Jefferson Laboratory. Real photons produced with the Hall-B bremsstrahlung-tagging system in the energy range from 0.35 to 1.55 GeV were incident on a liquid 4^4He target. This is the first measurement of the photodisintegration of 4^4He above 0.4 GeV. The differential cross sections for the ฮณ\gamma4^4Heโ†’pt\to pt reaction have been measured as a function of photon-beam energy and proton-scattering angle, and are compared with the latest model calculations by J.-M. Laget. At 0.6-1.2 GeV, our data are in good agreement only with the calculations that include three-body mechanisms, thus confirming their importance. These results reinforce the conclusion of our previous study of the three-body breakup of 3^3He that demonstrated the great importance of three-body mechanisms in the energy region 0.5-0.8 GeV .Comment: 13 pages submitted in one tgz file containing 2 tex file and 22 postscrip figure

    ฯ€0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction ฮณpโ†’pฯ€0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction

    Full text link
    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions ฮณโƒ—+pโ†’K++ฮ›โƒ—\vec\gamma + p \to K^+ + \vec\Lambda and ฮณโƒ—+pโ†’K++ฮฃโƒ—0\vec\gamma + p \to K^+ + \vec\Sigma^0. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies WW between 1.6 and 2.53 GeV, and for โˆ’0.85<cosโกฮธK+c.m.<+0.95-0.85<\cos\theta_{K^+}^{c.m.}< +0.95. For the ฮ›\Lambda, the polarization transfer coefficient along the photon momentum axis, CzC_z, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, CxC_x, is smaller than CzC_z by a roughly constant difference of unity. Most significantly, the {\it total} ฮ›\Lambda polarization vector, including the induced polarization PP, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the ฮฃ0\Sigma^0 this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review

    Photosynthetic growth despite a broken Q-cycle

    Get PDF
    Central in respiration or photosynthesis, the cytochrome bc1 and b6f complexes are regarded as functionally similar quinol oxidoreductases. They both catalyse a redox loop, the Q-cycle, which couples electron and proton transfer. This loop involves a bifurcated electron transfer step considered as being mechanistically mandatory, making the Q-cycle indispensable for growth. Attempts to falsify this paradigm in the case of cytochrome bc1 have failed. The rapid proteolytic degradation of b6f complexes bearing mutations aimed at hindering the Q-cycle has precluded so far the experimental assessment of this model in the photosynthetic chain. Here we combine mutations in Chlamydomonas that inactivate the redox loop but preserve high accumulation levels of b6f complexes. The oxidoreductase activity of these crippled complexes is sufficient to sustain photosynthetic growth, which demonstrates that the Q-cycle is dispensable for oxygenic photosynthesis

    Soybean Trihelix Transcription Factors GmGT-2A and GmGT-2B Improve Plant Tolerance to Abiotic Stresses in Transgenic Arabidopsis

    Get PDF
    BACKGROUND:Trihelix transcription factors play important roles in light-regulated responses and other developmental processes. However, their functions in abiotic stress response are largely unclear. In this study, we identified two trihelix transcription factor genes GmGT-2A and GmGT-2B from soybean and further characterized their roles in abiotic stress tolerance. FINDINGS:Both genes can be induced by various abiotic stresses, and the encoded proteins were localized in nuclear region. In yeast assay, GmGT-2B but not GmGT-2A exhibits ability of transcriptional activation and dimerization. The N-terminal peptide of 153 residues in GmGT-2B was the minimal activation domain and the middle region between the two trihelices mediated the dimerization of the GmGT-2B. Transactivation activity of the GmGT-2B was also confirmed in plant cells. DNA binding analysis using yeast one-hybrid assay revealed that GmGT-2A could bind to GT-1bx, GT-2bx, mGT-2bx-2 and D1 whereas GmGT-2B could bind to the latter three elements. Overexpression of the GmGT-2A and GmGT-2B improved plant tolerance to salt, freezing and drought stress in transgenic Arabidopsis plants. Moreover, GmGT-2B-transgenic plants had more green seedlings compared to Col-0 under ABA treatment. Many stress-responsive genes were altered in GmGT-2A- and GmGT-2B-transgenic plants. CONCLUSION:These results indicate that GmGT-2A and GmGT-2B confer stress tolerance through regulation of a common set of genes and specific sets of genes. GmGT-2B also affects ABA sensitivity

    Mouse Transgenesis Identifies Conserved Functional Enhancers and cis-Regulatory Motif in the Vertebrate LIM Homeobox Gene Lhx2 Locus

    Get PDF
    The vertebrate Lhx2 is a member of the LIM homeobox family of transcription factors. It is essential for the normal development of the forebrain, eye, olfactory system and liver as well for the differentiation of lymphoid cells. However, despite the highly restricted spatio-temporal expression pattern of Lhx2, nothing is known about its transcriptional regulation. In mammals and chicken, Crb2, Dennd1a and Lhx2 constitute a conserved linkage block, while the intervening Dennd1a is lost in the fugu Lhx2 locus. To identify functional enhancers of Lhx2, we predicted conserved noncoding elements (CNEs) in the human, mouse and fugu Crb2-Lhx2 loci and assayed their function in transgenic mouse at E11.5. Four of the eight CNE constructs tested functioned as tissue-specific enhancers in specific regions of the central nervous system and the dorsal root ganglia (DRG), recapitulating partial and overlapping expression patterns of Lhx2 and Crb2 genes. There was considerable overlap in the expression domains of the CNEs, which suggests that the CNEs are either redundant enhancers or regulating different genes in the locus. Using a large set of CNEs (810 CNEs) associated with transcription factor-encoding genes that express predominantly in the central nervous system, we predicted four over-represented 8-mer motifs that are likely to be associated with expression in the central nervous system. Mutation of one of them in a CNE that drove reporter expression in the neural tube and DRG abolished expression in both domains indicating that this motif is essential for expression in these domains. The failure of the four functional enhancers to recapitulate the complete expression pattern of Lhx2 at E11.5 indicates that there must be other Lhx2 enhancers that are either located outside the region investigated or divergent in mammals and fishes. Other approaches such as sequence comparison between multiple mammals are required to identify and characterize such enhancers
    • โ€ฆ
    corecore