26 research outputs found

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Fabrication method of high energy beam for solid-state nanopore

    No full text
    Solid-state nanopores have drawn the interest of numerous researchers due to their excellent mechanical properties, stability, and shape control, which have demonstrated tremendous potential in gene detection, protein detection, energy conversion, material separation, and water purification. And shape-controlled and efficient solid-state nanopore manufacturing technology is the prerequisite for the application of solid-state nanopore. At present, the high energy beam manufacturing method has the advantages of high efficiency, high precision and high manufacturing controllability among the conventional solid state nanopore manufacturing methods. This paper provides an overview of four solid state nanopore fabrication methods including high energy electron beam, focused ion beam, laser etching and ion track etching and their fundamental principles. The benefits and drawbacks of these methods, as well as their feasibility for large-scale controlled fabrication are discussed

    MatPSST: A Matlab/Simulink‐based power system simulation toolbox for research and education

    No full text
    Abstract This paper presents an open‐access Matlab/Simulink‐based power system simulation toolbox (MatPSST) for research and education. In MatPSST, dynamic modeling is implemented by Simulink. Only the initialization process is coded in Matlab. This structure makes full use of Simulink, enabling users to fully use the rich solvers and built‐in toolboxes in Matlab/Simulink, such as small‐signal analysis, without additional programming. The interaction with real‐time platforms like RTLAB and dSPACE in MatPSST is convenient through the Simulink interface. In addition, MatPSST provides a uniform interface and flexible framework for user‐defined functions. Users do not need to consider the interaction between models and dynamic solvers when implementing state‐of‐the‐art user‐defined models. To avoid the heavy work (replicate units and change parameters) in modeling detailed wind farm or photovoltaic station with hundreds of renewable generation units, the idea of the vector‐variable‐based model is proposed with MatPSST. Case studies introduce some selected application examples of MatPSST in research and education and demonstrate its accuracy by the comparisons with Simscape and PSAT. The cases reveal the advantages of MatPSST in promoting power system research and education

    Comparison of LID and Electrical Injection Regeneration of PERC and Al-BSF Solar Cells from a Cz-Si Ingot

    No full text
    In order to study the effect of device structures and silicon wafer positions on light-induced degradation (LID) and regeneration, five groups of industrial PERC and Al-BSF solar cells were fabricated by using silicon wafers from different positions of a B-doped Czochralski silicon (Cz-Si) ingot. Then, the cells were subjected to a dark annealing (200 °C, 30 min), the first LID (45 °C, 1 sun, 12 h), an electrical injection regeneration (175 °C, 18 A, 30 min) and the second LID (45 °C, 1 sun, 12 h) in order, and the variations of performance of the cells with processing time were measured. It was found that after the electrical injection regeneration, the efficiency losses of PERC cells decreased from 1.28–1.76%absolute in the first LID to 0.09–0.16%absolute in the second LID, while those of Al-BSF cells decreased from 0.3–0.66%absolute in the first LID to 0 in the second LID. The efficiency losses of PERC cells during the first LID were caused by the co-action of B-O-defect-induced LID (BO-LID) and dissociation of Fe-B pairs, and the latter contributed 5.81–9.56% of the efficiency loss, while those of Al-BSF cells during the first LID were almost contributed by BO-LID solely. For both kinds of cells, the cells made from the silicon wafers from middle of the ingot had the best performance throughout the experiment. In addition, the LID and regeneration treatments only affected the spectral response of the cells in the wavelength larger than 700 nm

    Comparison of LID and Electrical Injection Regeneration of PERC and Al-BSF Solar Cells from a Cz-Si Ingot

    No full text
    In order to study the effect of device structures and silicon wafer positions on light-induced degradation (LID) and regeneration, five groups of industrial PERC and Al-BSF solar cells were fabricated by using silicon wafers from different positions of a B-doped Czochralski silicon (Cz-Si) ingot. Then, the cells were subjected to a dark annealing (200 &deg;C, 30 min), the first LID (45 &deg;C, 1 sun, 12 h), an electrical injection regeneration (175 &deg;C, 18 A, 30 min) and the second LID (45 &deg;C, 1 sun, 12 h) in order, and the variations of performance of the cells with processing time were measured. It was found that after the electrical injection regeneration, the efficiency losses of PERC cells decreased from 1.28&ndash;1.76%absolute in the first LID to 0.09&ndash;0.16%absolute in the second LID, while those of Al-BSF cells decreased from 0.3&ndash;0.66%absolute in the first LID to 0 in the second LID. The efficiency losses of PERC cells during the first LID were caused by the co-action of B-O-defect-induced LID (BO-LID) and dissociation of Fe-B pairs, and the latter contributed 5.81&ndash;9.56% of the efficiency loss, while those of Al-BSF cells during the first LID were almost contributed by BO-LID solely. For both kinds of cells, the cells made from the silicon wafers from middle of the ingot had the best performance throughout the experiment. In addition, the LID and regeneration treatments only affected the spectral response of the cells in the wavelength larger than 700 nm

    Years of life lost and life expectancy attributable to ambient temperature: A time series study in 93 Chinese cities

    No full text
    Abstract Although increasing evidence has reported that unfavorable temperature may lead to increased premature mortality, a systematic assessment is lacking on the impact of ambient temperature on years of life lost (YLL) and life expectancy in China. Daily data on mortality, YLL, meteorological factors and air pollution were obtained from 93 Chinese cities during 2013–2016. A two-stage analytic approach was applied for statistical analysis. At the first stage, a distributed lag non-linear model with a Gaussian link was used to estimate the city-specific association between ambient temperature and YLLs. At the second stage, a meta-analysis was used to obtain the effect estimates at regional and national levels. We further estimated the corresponding YLLs and average life expectancy loss per deceased person attributable to the non-optimum temperature exposures based on the established associations. We observed ‘U’ or ‘J’ shaped associations between daily temperature and YLL. The heat effect appeared on the current day and lasted for only a few days, while the cold effect appeared a few days later and lasted for longer. In general, 6.90% (95% confidence interval (CI): 4.62%, 9.18%) of YLLs could be attributed to non-optimum temperatures at the national level, with differences across different regions, ranging from 5.36% (95% CI: −3.36%, 6.89%) in east region to 9.09% (95% CI: −5.55%, 23.73%) in northwest region. For each deceased person, we estimated that non-optimum temperature could cause a national-averaged 1.02 years (95% CI: 0.68, 1.36) of life loss, with a significantly higher effect due to cold exposure (0.89, 95% CI: 0.59, 1.19) than that of hot exposure (0.13, 95% CI: 0.09, 0.16). This national study provides evidence that both cold and hot weather might result in significant YLL and lower life expectancy. Regional adaptive policies and interventions should be considered to reduce the mortality burden associated with the non-optimum temperature exposures
    corecore