18 research outputs found

    Genetic variations of the porcine PRKAG3 gene in Chinese indigenous pig breeds

    Get PDF
    Four missense substitutions (T30N, G52S, V199I and R200Q) in the porcine PRKAG3 gene were considered as the likely candidate loci affecting meat quality. In this study, the R200Q substitution was investigated in a sample of 62 individuals from Hampshire, Chinese Min and Erhualian pigs, and the genetic variations of T30N, G52S and V199I substitutions were detected in 1505 individuals from 21 Chinese indigenous breeds, 5 Western commercial pig breeds, and the wild pig. Allele 200R was fixed in Chinese Min and Erhualian pigs. Haplotypes II-QQ and IV-QQ were not observed in the Hampshire population, supporting the hypothesis that allele 200Q is tightly linked with allele 199V. Significant differences in allele frequencies of the three substitutions (T30N, G52S and V199I) between Chinese indigenous pigs and Western commercial pigs were observed. Obvious high frequencies of the "favorable" alleles 30T and 52G in terms of meat quality were detected in Chinese indigenous pigs, which are well known for high meat quality. However, the frequency of the "favorable" allele 199I, which was reported to have a greater effect on meat quality in comparison with 30T and 52G, was very low in all of the Chinese indigenous pigs except for the Min pig. The reasons accounting for this discrepancy remain to be addressed. The presence of the three substitutions in purebred Chinese Tibetan pigs indicates that the three substitutions were ancestral mutations. A novel A/G substitution at position 51 in exon 1 was identified. The results suggest that further studies are required to investigate the associations of these substitutions in the PRKAG3 gene with meat quality of Chinese indigenous pigs, and to uncover other polymorphisms in the PRKAG3 gene with potential effects on meat quality in Chinese indigenous pigs

    The development and evaluation of individualized templates to assist transoral C2 articular mass or transpedicular screw placement in TARP-IV procedures: adult cadaver specimen study

    Get PDF
    OBJECTIVES: The transoral atlantoaxial reduction plate system treats irreducible atlantoaxial dislocation from transoral atlantoaxial reduction plate-I to transoral atlantoaxial reduction plate-III. However, this system has demonstrated problems associated with screw loosening, atlantoaxial fixation and concealed or manifest neurovascular injuries. This study sought to design a set of individualized templates to improve the accuracy of anterior C2 screw placement in the transoral atlantoaxial reduction plate-IV procedure. METHODS: A set of individualized templates was designed according to thin-slice computed tomography data obtained from 10 human cadavers. The templates contained cubic modules and drill guides to facilitate transoral atlantoaxial reduction plate positioning and anterior C2 screw placement. We performed 2 stages of cadaveric experiments with 2 cadavers in stage one and 8 in stage two. Finally, guided C2 screw placement was evaluated by reading postoperative computed tomography images and comparing the planned and inserted screw trajectories. RESULTS: There were two cortical breaching screws in stage one and three in stage two, but only the cortical breaching screws in stage one were ranked critical. In stage two, the planned entry points and the transverse angles of the anterior C2 screws could be simulated, whereas the declination angles could not be simulated due to intraoperative blockage of the drill bit and screwdriver by the upper teeth. CONCLUSIONS: It was feasible to use individualized templates to guide transoral C2 screw placement. Thus, these drill templates combined with transoral atlantoaxial reduction plate-IV, may improve the accuracy of transoral C2 screw placement and reduce related neurovascular complications

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Genetic variations of the porcine PRKAG3 gene in Chinese indigenous pig breeds

    No full text
    Four missense substitutions (T30N, G52S, V199I and R200Q) in the porcine PRKAG3 gene were considered as the likely candidate loci affecting meat quality. In this study, the R200Q substitution was investigated in a sample of 62 individuals from Hampshire, Chinese Min and Erhualian pigs, and the genetic variations of T30N, G52S and V199I substitutions were detected in 1505 individuals from 21 Chinese indigenous breeds, 5 Western commercial pig breeds, and the wild pig. Allele 200R was fixed in Chinese Min and Erhualian pigs. Haplotypes II-QQ and IV-QQ were not observed in the Hampshire population, supporting the hypothesis that allele 200Q is tightly linked with allele 199V. Significant differences in allele frequencies of the three substitutions (T30N, G52S and V199I) between Chinese indigenous pigs and Western commercial pigs were observed. Obvious high frequencies of the “favorable” alleles 30T and 52G in terms of meat quality were detected in Chinese indigenous pigs, which are well known for high meat quality. However, the frequency of the “favorable” allele 199I, which was reported to have a greater effect on meat quality in comparison with 30T and 52G, was very low in all of the Chinese indigenous pigs except for the Min pig. The reasons accounting for this discrepancy remain to be addressed. The presence of the three substitutions in purebred Chinese Tibetan pigs indicates that the three substitutions were ancestral mutations. A novel A/G substitution at position 51 in exon 1 was identified. The results suggest that further studies are required to investigate the associations of these substitutions in the PRKAG3 gene with meat quality of Chinese indigenous pigs, and to uncover other polymorphisms in the PRKAG3 gene with potential effects on meat quality in Chinese indigenous pigs

    The development and evaluation of individualized templates to assist transoral C2 articular mass or transpedicular screw placement in TARP-IV procedures: adult cadaver specimen study

    No full text
    OBJECTIVES: The transoral atlantoaxial reduction plate system treats irreducible atlantoaxial dislocation from transoral atlantoaxial reduction plate-I to transoral atlantoaxial reduction plate-III. However, this system has demonstrated problems associated with screw loosening, atlantoaxial fixation and concealed or manifest neurovascular injuries. This study sought to design a set of individualized templates to improve the accuracy of anterior C2 screw placement in the transoral atlantoaxial reduction plate-IV procedure. METHODS: A set of individualized templates was designed according to thin-slice computed tomography data obtained from 10 human cadavers. The templates contained cubic modules and drill guides to facilitate transoral atlantoaxial reduction plate positioning and anterior C2 screw placement. We performed 2 stages of cadaveric experiments with 2 cadavers in stage one and 8 in stage two. Finally, guided C2 screw placement was evaluated by reading postoperative computed tomography images and comparing the planned and inserted screw trajectories. RESULTS: There were two cortical breaching screws in stage one and three in stage two, but only the cortical breaching screws in stage one were ranked critical. In stage two, the planned entry points and the transverse angles of the anterior C2 screws could be simulated, whereas the declination angles could not be simulated due to intraoperative blockage of the drill bit and screwdriver by the upper teeth. CONCLUSIONS: It was feasible to use individualized templates to guide transoral C2 screw placement. Thus, these drill templates combined with transoral atlantoaxial reduction plate-IV, may improve the accuracy of transoral C2 screw placement and reduce related neurovascular complications
    corecore