19 research outputs found
Molecular and Cytogenetic Identification of Wheat-<i>Thinopyrum intermedium</i> Double Substitution Line-Derived Progenies for Stripe Rust Resistance
Thinopyrum intermedium (2n = 6x = 42, JJJSJSStSt) has been hybridized extensively with common wheat and proven to be a valuable germplasm source for improving disease resistance and yield potential of wheat. A novel disease-resistant wheat-Th. intermedium double substitution line X479, carrying 1St(1B) and 4St-4JS (4B), was identified using multi-color non-denaturing fluorescence in situ hybridization (ND-FISH). With the aim of transferring Thinopyrum-specific chromatin to wheat, a total of 573 plants from F2 and F3 progenies of X479 crossed with wheat cultivar MY11 were developed and characterized using sequential ND-FISH with multiple probes. Fifteen types of wheat-Thinopyrum translocation chromosomes were preferentially transmitted in the progenies, and the homozygous wheat-1St, and wheat-4JSL translocation lines were identified using ND-FISH, Oligo-FISH painting and CENH3 immunostaining. The wheat-4JSL translocation lines exhibited high levels of resistance to stripe rust prevalent races in field screening. The gene for stripe rust resistance was found to be physically located on FL0–0.60 of the 4JSL, using deletion lines and specific DNA markers. The new wheat-Th. intermedium translocation lines can be exploited as useful germplasms for wheat improvement
Porous Poly(Hexamethylene Biguanide) Hydrochloride Loaded Silk Fibroin Sponges with Antibacterial Function
In order to endue silk fibroin (SF) sponges with antibacterial function, positively charged poly(hexamethylene biguanide) hydrochloride (PHMB) was incorporated in SF through electrostatic interaction and by freeze-drying technique. The influence of PHMB on the structure and antibacterial activities of SF sponges was investigated. The zeta potential of SF was increased significantly when PHMB was incorporated in SF. The pores with size from 80 to 300 µm and the microscale holes in the pore walls within PHMB-loaded SF sponges provided the channels of PHMB release. The PHMB loaded in the porous sponges showed continuous and slow release for up to 20 days. Effective growth inhibition of both Escherichia coli and Staphylococcus aureus was achieved when the mass ratio of PHMB/SF was higher than 2/100. These results suggest that the porous PHMB/SF sponges have the potential to be used as a novel wound dressing for open skin wounds
Effects of Different Isolation Media on Structural and Functional Properties of Starches from Root Tubers of Purple, Yellow and White Sweet Potatoes
Different-colored sweet potatoes have different contents of pigments and phenolic compounds in their root tubers, which influence the isolation of starch. It is important to justify the identification of the most suitable isolation medium of starch from different colored root tubers. In this study, starches were isolated from root tubers of purple, yellow and white sweet potatoes using four different extraction media, including H2O, 0.5% Na2S2O5, 0.2% NaOH, and both 0.5% Na2S2O5 and 0.2% NaOH. Their structural and functional properties were investigated and compared among different extraction media. The results showed that the granule size, apparent amylose content, lamellar peak intensity, thermal properties, and pasting properties were different among different-colored sweet potatoes due to their different genotype backgrounds. The four extraction media had no significant effects on starch structural properties, including apparent amylose content, crystalline structure, ordered degree, and lamellar peak intensity, except that the NaOH and Na2S2O5 treatment were able to increase the whiteness of purple and yellow sweet potato starches. The different extraction media had some effects on starch functional properties, including thermal properties, swelling power, water solubility, and pasting properties. The above results indicated that the H2O was the most suitable extraction medium to simply and fast isolate starch from root tubers of different-colored sweet potatoes
A Novel Waveform Decomposition and Spectral Extraction Method for 101-Channel Hyperspectral LiDAR
The 101-channel full-waveform hyperspectral LiDAR (FWHSL) is able to simultaneously obtain geometric and spectral information of the target, and it is widely applied in 3D point cloud terrain generation and classification, vegetation detection, automatic driving, and other fields. Currently, most waveform data processing methods are mainly aimed at single or several wavelengths. Hidden components are revealed mainly through optimization algorithms and comparisons of neighbor distance in different wavelengths. The same target may be misjudged as different ones when dealing with 101 channels. However, using the gain decomposition method with dozens of wavelengths will change the spectral intensity and affect the classification. In this paper, for hundred-channel FWHSL data, we propose a method that can detect and re-decompose the channels with outliers by checking neighbor distances and selecting specific wavelengths to compose a characteristic spectrum by performing PCA and clustering on the decomposition results for object identification. The experimental results show that compared with the conventional single channel waveform decomposition method, the average accuracy is increased by 20.1%, the average relative error of adjacent target distance is reduced from 0.1253 to 0.0037, and the degree of distance dispersion is reduced by 95.36%. The extracted spectrum can effectively characterize and distinguish the target and contains commonly used wavelengths that make up the vegetation index (e.g., 670 nm, 784 nm, etc.)
A Novel Waveform Decomposition and Spectral Extraction Method for 101-Channel Hyperspectral LiDAR
The 101-channel full-waveform hyperspectral LiDAR (FWHSL) is able to simultaneously obtain geometric and spectral information of the target, and it is widely applied in 3D point cloud terrain generation and classification, vegetation detection, automatic driving, and other fields. Currently, most waveform data processing methods are mainly aimed at single or several wavelengths. Hidden components are revealed mainly through optimization algorithms and comparisons of neighbor distance in different wavelengths. The same target may be misjudged as different ones when dealing with 101 channels. However, using the gain decomposition method with dozens of wavelengths will change the spectral intensity and affect the classification. In this paper, for hundred-channel FWHSL data, we propose a method that can detect and re-decompose the channels with outliers by checking neighbor distances and selecting specific wavelengths to compose a characteristic spectrum by performing PCA and clustering on the decomposition results for object identification. The experimental results show that compared with the conventional single channel waveform decomposition method, the average accuracy is increased by 20.1%, the average relative error of adjacent target distance is reduced from 0.1253 to 0.0037, and the degree of distance dispersion is reduced by 95.36%. The extracted spectrum can effectively characterize and distinguish the target and contains commonly used wavelengths that make up the vegetation index (e.g., 670 nm, 784 nm, etc.)
Photoluminescence investigation on the gas sensing property of ZnO nanorods prepared by plasma-enhanced CVD method
Gas sensing property of ZnO nanorods prepared by plasma-enhanced chemical vapor deposition (CVD) method is studied using formaldehyde as the probe gas, and the intrinsic defects are investigated by photoluminescence (PL). The results show that high ratio of visible to ultra-violet luminescence cannot account for high gas response. The PL spectra are Gaussian decomposed to subpeaks according to their origination, which are separated into donor-(DL) and acceptor-related (AL) ones. A conclusion is derived that where the content of DL is high and that of AL is low, the gas response is high. This conclusion is further confirmed by tuning the PL spectra and gas sensing property through annealing in different atmospheres. (C) 2009 Elsevier B.V. All rights reserved
Research on Temperature Control Index for High Concrete Dams Based on Information Entropy and Cloud Model from the View of Spatial Field
It is significant to adopt scientific temperature control criteria for high concrete dams in the construction period according to practical experience and theoretical calculation. This work synthetically uses information entropy and a cloud model and develops novel in situ observation data-based temperature control indexes from the view of a spatial field. The order degree and the disorder degree of observation values are defined according to the probability principle. Information entropy and weight parameters are combined to describe the distribution characteristics of the temperature field. Weight parameters are optimized via projection pursuit analysis (PPA), and then temperature field entropy (TFE) is constructed. Based on the above work, multi-level temperature control indexes are set up via a cloud model. Finally, a case study is conducted to verify the performance of the proposed method. According to the calculation results, the change law of TFEs agrees with actual situations, indicating that the established TFE is reasonable, the application conditions of the cloud model are wider than those of the typical small probability method, and the determined temperature control indexes improve the safety management level of high concrete dams. Research results offer scientific reference and technical support for temperature control standards adopted at other similar projects
Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor
In this work, ZnO multishelled hollow spheres with an average diameter of 5 mu m were prepared by a facile solvothermal process in a ternary solvent system including water, ethanol and ethylene, and assynthesized products were constructed by highly directional interactions of anisotropic single-crystalline ZnO nanorods. A two-step assembly process followed symmetric Ostwald ripening process is proposed to explain the formation mechanism of obtained products, which highlights the driving force of the solvents in promoting the nanorod aggregation and the solid evacuation of final products. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy were used to characterize the structure of synthesized products. The investigation of the gas-sensing properties indicated that control of the shape-defined building units and their assembled structure provides ZnO with high performance in gas sensing, and the double-wall hollow structures exhibit the highest sensitivity to formaldehyde gas than the nanorods and hollow spheres, which is contributed to their high donor-related and the low acceptor-related intrinsic defects in ZnO crystals
Molecular mechanism of bovine Gasdermin D-mediated pyroptosis
Abstract Pyroptosis is a form of programmed cell death characterized by cell swelling, pore formation in the plasma membrane, lysis, and releases of cytoplasmic contents. To date, the molecular mechanism of human and murine Gasdermin D-mediated pyroptosis have been fully investigated. However, studies focusing on molecular mechanism of bovine Gasdermin D (bGSDMD)-mediated pyroptosis and its function against pathogenic infection were unclear. In the present study, we demonstrate that bovine caspase-1 (bCaspase-1) cleaves bGSDMD at amino acid residue D277 to produce an N-terminal fragment (bGSDMD-p30) which leads to pyroptosis. The amino acid residues T238 and F239 are critical for bGSDMD-p30-mediated pyroptosis. The loop aa 278-299, L293 and A380 are the key sites for autoinhibitory structure of the full length of bGSDMD. In addition, bCaspase-3 also cleaves bGSDMD at residue Asp86 without inducing cell death. Therefore, our study provides the first detailed elucidation of the mechanism of bovine GSDMD-mediated pyroptosis. The results will establish a significant foundation for future research on the role of pyroptosis in bovine infectious diseases