196 research outputs found
Neutral-Current Atmospheric Neutrino Flux Measurement Using Neutrino-Proton Elastic Scattering in Super-Kamiokande
Recent results show that atmospheric oscillate with eV and , and that
conversion into is strongly disfavored. The Super-Kamiokande (SK)
collaboration, using a combination of three techniques, reports that their data
favor over . This distinction
is extremely important for both four-neutrino models and cosmology. We propose
that neutrino-proton elastic scattering () in water
\v{C}erenkov detectors can also distinguish between active and sterile
oscillations. This was not previously recognized as a useful channel since only
about 2% of struck protons are above the \v{C}erenkov threshold. Nevertheless,
in the present SK data there should be about 40 identifiable events. We show
that these events have unique particle identification characteristics, point in
the direction of the incoming neutrinos, and correspond to a narrow range of
neutrino energies (1-3 GeV, oscillating near the horizon). This channel will be
particularly important in Hyper-Kamiokande, with times higher rate.
Our results have other important applications. First, for a similarly small
fraction of atmospheric neutrino quasielastic events, the proton is
relativistic. This uniquely selects (not ) events,
useful for understanding matter effects, and allows determination of the
neutrino energy and direction, useful for the dependence of oscillations.
Second, using accelerator neutrinos, both elastic and quasielastic events with
relativistic protons can be seen in the K2K 1-kton near detector and MiniBooNE.Comment: 10 pages RevTeX, 8 figure
Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors.
Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro
Burden of podoconiosis in poor rural communities in Guliso woreda, western Ethiopia
Background. Podoconiosis is an environmental lymphoedema affecting people living and working barefoot on irritant red clay soil. Podoconiosis is relatively well described in southern Ethiopia, but remains neglected in other parts of the Ethiopian highlands. This study aimed to assess the burden of podoconiosis in rural communities in western Ethiopia.
Methodology/Principal Findings. A cross-sectional study was conducted in Gulliso woreda (district), west Ethiopia. A household survey in the 26 rural kebeles (villages) of this district was conducted to identify podoconiosis patients and to measure disease prevalence. A more detailed study was done in six randomly selected kebeles to describe clinical features of the disease, patients’ experiences of foot hygiene, and shoe wearing practice. 1,935 cases of podoconiosis were registered, giving a prevalence of 2.8%. The prevalence was higher in those aged 15 – 64 years (5.2%) and in females than males (prevalence ratio 2.6:1). 90.3% of patients were in the 15 – 64 year age group. In the detailed study, 335 cases were interviewed and their feet assessed. The majority of patients were farmers, uneducated, and poor. Two-third of patients developed the disease before the age of thirty. Almost all patients (97.0%) had experienced adenolymphangitis (ALA - red, hot legs, swollen and painful groin) at least once during the previous year. Patients experienced an average of 5.5 ALA episodes annually, each of average 4.4 days, thus 24 working days were lost annually. The incidence of ALA in podoconiosis patients was higher than that reported for filariasis in other countries. Shoe wearing was limited mainly due to financial problems.
Conclusions. We have documented high podoconiosis prevalence, frequent adenolymphangitis and high disease-related morbidity in west Ethiopia. Interventions must be developed to prevent, treat and control podoconiosis, one of the core neglected tropical diseases in Ethiopia
Shower Power: Isolating the Prompt Atmospheric Neutrino Flux Using Electron Neutrinos
At high energies, the very steep decrease of the conventional atmospheric
component of the neutrino spectrum should allow the emergence of even small and
isotropic components of the total spectrum, indicative of new physics, provided
that they are less steeply decreasing, as generically expected. One candidate
is the prompt atmospheric neutrino flux, a probe of cosmic ray composition in
the region of the knee as well as small- QCD, below the reach of collider
experiments. A second is the diffuse extragalactic background due to distant
and unresolved AGNs and GRBs, a key test of the nature of the highest-energy
sources in the universe. Separating these new physics components from the
conventional atmospheric neutrino flux, as well as from each other, will be
very challenging. We show that the charged-current {\it electron} neutrino
"shower" channel should be particularly effective for isolating the prompt
atmospheric neutrino flux, and that it is more generally an important
complement to the usually-considered charged-current {\it muon} neutrino
"track" channel. These conclusions remain true even for the low prompt
atmospheric neutrino flux predicted in a realistic cosmic ray scenario with
heavy and varying composition across the knee (Candia and Roulet, 2003 JCAP
{\bf 0309}, 005). We also improve the corresponding calculation of the neutrino
flux induced by cosmic ray collisions with the interstellar medium.Comment: 15 pages, 4 figures. Minor modifications, version accepted for
publication in JCA
Potential for Supernova Neutrino Detection in MiniBooNE
The MiniBooNE detector at Fermilab is designed to search for oscillation appearance at and to make a
decisive test of the LSND signal. The main detector (inside a veto shield) is a
spherical volume containing 0.680 ktons of mineral oil. This inner volume,
viewed by 1280 phototubes, is primarily a \v{C}erenkov medium, as the
scintillation yield is low. The entire detector is under a 3 m earth
overburden. Though the detector is not optimized for low-energy (tens of MeV)
events, and the cosmic-ray muon rate is high (10 kHz), we show that MiniBooNE
can function as a useful supernova neutrino detector. Simple trigger-level cuts
can greatly reduce the backgrounds due to cosmic-ray muons. For a canonical
Galactic supernova at 10 kpc, about 190 supernova
events would be detected. By adding MiniBooNE to the international network of
supernova detectors, the possibility of a supernova being missed would be
reduced. Additionally, the paths of the supernova neutrinos through Earth will
be different for MiniBooNE and other detectors, thus allowing tests of
matter-affected mixing effects on the neutrino signal.Comment: Added references, version to appear in PR
Detection of Supernova Neutrinos by Neutrino-Proton Elastic Scattering
We propose that neutrino-proton elastic scattering, ,
can be used for the detection of supernova neutrinos in scintillator detectors.
Though the proton recoil kinetic energy spectrum is soft, with , and the scintillation light output from slow, heavily ionizing
protons is quenched, the yield above a realistic threshold is nearly as large
as that from . In addition, the measured proton
spectrum is related to the incident neutrino spectrum, which solves a
long-standing problem of how to separately measure the total energy and
temperature of , , , and .
The ability to detect this signal would give detectors like KamLAND and
Borexino a crucial and unique role in the quest to detect supernova neutrinos.Comment: 10 pages, 9 figures, revtex
Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector
Development of large mass detectors for low-energy neutrinos and dark matter
may allow supernova detection via neutrino-nucleus elastic scattering. An
elastic-scattering detector could observe a few, or more, events per ton for a
galactic supernova at 10 kpc ( m). This large yield, a
factor of at least 20 greater than that for existing light-water detectors,
arises because of the very large coherent cross section and the sensitivity to
all flavors of neutrinos and antineutrinos. An elastic scattering detector can
provide important information on the flux and spectrum of and
from supernovae. We consider many detectors and a range of target
materials from He to Pb. Monte Carlo simulations of low-energy
backgrounds are presented for the liquid-neon-based Cryogenic Low Energy
Astrophysics with Noble gases (CLEAN) detector. The simulated background is
much smaller than the expected signal from a galactic supernova.Comment: 10 pages, 5 figures, submitted to Phys. Rev.
Status of Muon Collider Research and Development and Future Plans
The status of the research on muon colliders is discussed and plans are
outlined for future theoretical and experimental studies. Besides continued
work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy
collider, many studies are now concentrating on a machine near 0.1 TeV (CoM)
that could be a factory for the s-channel production of Higgs particles. We
discuss the research on the various components in such muon colliders, starting
from the proton accelerator needed to generate pions from a heavy-Z target and
proceeding through the phase rotation and decay ()
channel, muon cooling, acceleration, storage in a collider ring and the
collider detector. We also present theoretical and experimental R & D plans for
the next several years that should lead to a better understanding of the design
and feasibility issues for all of the components. This report is an update of
the progress on the R & D since the Feasibility Study of Muon Colliders
presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A.
Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics
(Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics,
Accelerators and Beam
Smoking and alcohol by HPV status in head and neck cancer : A Mendelian Randomization Study
Peer reviewe
- …