8 research outputs found

    Relationship between aggressiveness of Stagonospora sp. isolates on field and hedge bindweeds, and in vitro production of fungal metabolites cercosporin, elsinochrome A and leptosphaerodione

    Get PDF
    Stagonospora convolvuli LA39, an effective biocontrol agent of Convolvulus arvensis (field bindweed) and Calystegia sepium (hedge bindweed) produces phytotoxic metabolites leptosphaerodione and elsinochrome A. Stagonospora isolate 214Caa produces the toxin cercosporin. If toxic metabolite production is not linked to the pathogenic ability of the fungus on bindweeds, selection of aggressive strains with limited or no production of the metabolites would reduce any perceived risk of using strains of the fungus as a mycoherbicide. Therefore, 30 isolates of Stagonospora sp. including LA39 and 214Caa were characterised for aggressiveness on both bindweeds, and production of the three metabolites. Nine isolates were more aggressive than LA39 on both bindweeds. Classification of isolates based on metabolite type agreed largely with previous similar characterisation based on polymerase chain reaction-restriction fragment length polymorphism of internal transcribed spacer of ribosomal DNA. Cercosporin producers produced neither leptosphaerodione nor elsinochrome A and together with isolates that produce none of the three metabolites, were less pathogenic on bindweeds. Conversely, there was a positive correlation between elsinochrome A and leptosphaerodione production, and each was positively correlated with aggressiveness of isolates on both bindweeds. Generally, any isolate where elsinochrome A was not detected was not aggressive on any of the two bindweeds. This probably implies that selecting elsinochrome A-negative, but aggressive Stagonospora strain(s) may be difficult. However, aggressive isolates may not produce elsinochrome A in planta at levels that could constitute any risk in the environment. In a preliminary attempt to determine the levels of elsinochrome A and leptosphaerodione produced in diseased bindweeds, none of the toxins was detected in Stagonospora infected bindweed leaves. Detailed investigation focusing on the detection and quantification of in planta production of elsinochrome A by Stagonospora isolates, and determination of the fate of elsinochrome A in the environment, and its relationship with leptosphaerodione may be essential. Similarly, development of molecular tools to monitor the mycoherbicide following field application is vita

    Fungal Endophytes from the Aerial Tissues of Important Tropical Forage Grasses \u3cem\u3e Brachiaria \u3c/em\u3e spp. in Kenya

    Get PDF
    Most, if not all plants in natural ecosystems are symbiotic with mycorrhizal fungi and/or fungal endophytes. This association between plant and fungi is believed to be over 400 million years old when plants first colonized the land (Redecker et al., 2000). These fungal symbionts play important roles on plant ecology, fitness, and evolution; shaping plant communities; and the community structure and diversity of associated organisms. The importance of fungal endophytes in cool season grasses production and effects of endophyte on the livestock health (Examples fescue toxicosis and ryegrass staggers) have been extensively investigated (Smith et al., 2009; di Menna et al., 2012). However, current understanding of fungal endophyte community of warm season grasses (including Brachiaria spp.) and the impact of these endophytes on livestock production is very limited. Therefore, this study aims to analyse fungal endophytes community inhabiting in the aerial tissues of important tropical grasses Brachiaria species from Kenya, an East African country representing place of origin for most of the Brachiaria species

    Climate-Smart \u3cem\u3eBrachiaria\u3c/em\u3e Grasses for Improving Livestock Production in East Africa

    Get PDF
    Climate change is a global phenomenon with negative impacts severely felt by poor people in developing countries (Morton 2007). Across many parts of Africa, rural poor communities rely greatly for their survival on agriculture and livestock that are amongst the most climate-sensitive economic sectors. Climate-smart agriculture helps farmers to increase food production, become more resilient to climate change and reduce greenhouse gas (GHG) emissions. The main anthro-pogenic GHGs are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O); they are critically important for regulating the Earth’s surface temperature. Inadequate quantity and quality of feed is a major constraint to livestock production, particularly during the dry seasons across Africa. The overall objective of this inter-institutional program is to increase feed availability in action areas of the target countries in East Africa (e.g. Kenya, Rwanda) by use of climate-smart Brachiaria forage grasses (Rao et al. 2011) for increased animal productivity and for generation of extra income to smallholder famers. An innovative programmatic approach will be used to reintroduce high quality, persistent and productive Brachiaria genotypes that were selected and improved in Latin America (Miles et al. 2004) back to Africa. These forage grasses will contribute to alleviate feed shortages, increase income to resource poor farmers, improve soil fertility, adapt to and mitigate climate change, increase milk and beef production, and as a result improve livelihoods and protect the environment

    Reproductive potential of fall armyworm Spodoptera frugiperda (J.E. Smith) and effects of feeding on diverse maize genotypes under artificial infestation

    Get PDF
    Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) has become a major threat to maize production in Africa. In this study, six maize genotypes were assessed for their resistance to FAW under artificial infestation in both laboratory and net house conditions. These included two FAW-tolerant hybrids (CKHFAW180294 and CKH191221), two commercial hybrids (WE2115 and CKH10717), and two open-pollinated varieties (ZM523 and KDV4). Larval development time and reproductive potential were assessed on maize leaves in the laboratory and a life table for FAW was constructed. The maize genotypes were also artificially infested with three FAW neonates at two phenological stages (V5 and V7) and reproductive stage (R1) in the net house. Leaf and ear damage scores were recorded on a scale of 1–9. Larval development time varied significantly between maize genotypes with the highest on CKH191221 (16.4 days) and the lowest on KDV4 (13.7 days). The intrinsic rate of natural increase for life tables varied from 0.24 on CKH191221 to 0.41 on KDV4. Mean generation time of FAW ranged from 17.6 to 22.8 days on KDV4 and CKH191221, respectively. Foliar damage was the lowest on CKH191221, and the highest on KDV4 at V7 infestation stage in week 1. CKH191221 had the lowest ear damage score, whereas ZM523 had the highest scores at V5 infestation stage. The highest and lowest yield reductions were observed on ZM523 (64%) at V7 infestation stage and CKHFAW180294 (6%) at R1 infestation stage, respectively. The results indicated the potential for developing tropical mid-altitude maize germplasm with native genetic resistance to FAW

    Fungal Endophytes from the Aerial Tissues of Important Tropical Forage Grasses Brachiaria spp. in Kenya

    Get PDF
    Most, if not all plants in natural ecosystems are symbiotic with mycorrhizal fungi and/or fungal endophytes. This association between plant and fungi is believed to be over 400 million years old when plants first colonized the land (Redecker et al., 2000). These fungal symbionts play important roles on plant ecology, fitness, and evolution; shaping plant communities; and the community structure and diversity of associated organisms. The importance of fungal endophytes in cool season grasses production and effects of endophyte on the livestock health (Examples fescue toxicosis and ryegrass staggers) have been extensively investigated (Smith et al., 2009; di Menna et al., 2012). However, current understanding of fungal endophyte community of warm season grasses (including Brachiaria spp.) and the impact of these endophytes on livestock production is very limited. Therefore, this study aims to analyse fungal endophytes community inhabiting in the aerial tissues of important tropical grasses Brachiaria species from Kenya, an East African country representing place of origin for most of the Brachiaria species
    corecore