5 research outputs found

    SPRING VIREMIA OF CARP

    Get PDF
    Dating back nearly SO years and possibly even to the Middle Ages, European pond culture of carp (Cyprinus carpio) and perhaps other cyprinid fishes has been plagued with a contagious disease of great importance. Variously known as infectious dropsy, infectious ascites, hemorrhagic septicemia, or rubella, the disease is probably the most serious cause of losses among these fishes; nearly sao reports have been published on the subject

    Characterization of structural proteins of hirame rhabdovirus, HRV

    Get PDF
    Structural proteins of hirame rhabdovirus (HRV) were analyzed by SDS-polyacrylamide gel electrophoresis, western blotting, 2-dimensional gel electrophoresis, and Triton X-100 treatment. Purified HRV virions were composed of: polymerase (L), glycoprotein (G), nucleoprotein (N), and 2 matrix proteins (M1 and M2). Based upon their relative mobilities, the estimated molecular weights of the proteins were: L, 156 KDa; G, 68 KDa; N, 46.4 KDa; M1, 26.4 KDa; and M2, 19.9 KDa. The electrophoretic pattern formed by the structural proteins of HRV was clearly different from that formed by pike fry rhabdovirus, spring viremia of carp virus, eel virus of America, and eel virus European X which belong to the Vesiculovirus genus; however, it resembled the pattern formed by structural proteins of viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV) which are members of the Lyssavirus genus. Among HRV, IHNV, and VHSV, differences were observed in the relative mobilities of the G, N, M1, and M2 proteins. Western blot analysis revealed that the G, N, and M2 proteins of HRV shared antigenic determinants with IHNV and VHSV, but not with any of the 4 fish vesiculoviruses tested. Cross-reactions between the M1 proteins of HRV, IHNV, or VHSV were not detected in this assay. Two-dimensional gel electrophoresis was used to show that HRV differed from IHNV or VHSV in the isoelectric point (pI) of the M1 and M2 proteins. In this system, 2 forms of the M1 protein of HRV and IHNV were observed. These subspecies of M1 had the same relative mobility but different pI values. Treatment of purified virions with 2% Triton X-100 in Tris buffer containing NaCl removed the G, M1, and M2 proteins of IHNV, but HRV virions were more stable under these conditions

    Complete Genome Sequence of Fer-de-Lance Virus Reveals a Novel Gene in Reptilian Paramyxoviruses

    No full text
    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3′ N-U-P-M-F-HN-L 5′, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species

    First Molecular Evidence for the Existence of Distinct Fish and Snake Adenoviruses

    No full text
    From adenovirus-like viruses originating from a fish and a snake species, a conserved part of the adenoviral DNA polymerase gene was PCR amplified, cloned and sequenced. Phylogenetic analysis showed that the snake adenovirus is closely related to the members of the proposed genus Atadenovirus, whereas the fish isolate seems to represent a separate cluster, likely a new genus
    corecore