1,214 research outputs found

    Approval Voting and Scoring Rules with Common Values

    Get PDF
    Consider the problem of deciding a winner among three alternatives when voters have common values, but private information regarding the values of the alternatives. We compare approval voting with other scoring rules. For any finite electorate, the best equilibrium under approval voting is more efficient than either plurality rule or negative voting. If any scoring rule yields a sequence of equilibria that aggregates information in large elections, then approval voting must do so as well

    A serpentine laminating micromixer combining splitting/recombination and advection

    Get PDF
    Mixing enhancement has drawn great attention from designers of micromixers, since the flow in a microchannel is usually characterized by a low Reynolds number ( Re) which makes the mixing quite a difficult task to accomplish. In this paper, a novel integrated efficient micromixer named serpentine laminating micromixer (SLM) has been designed, simulated, fabricated and fully characterized. In the SLM, a high level of efficient mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination ( in other terms, lamination) mechanism is obtained by the successive arrangement of "F''-shape mixing units in two layers. The advection is induced by the overall three-dimensional serpentine path of the microchannel. The SLM was realized by SU-8 photolithography, nickel electroplating, injection molding and thermal bonding. Mixing performance of the SLM was fully characterized numerically and experimentally. The numerical mixing simulations show that the advection acts favorably to realize the ideal vertical lamination of fluid flow. The mixing experiments based on an average mixing color intensity change of phenolphthalein show a high level of mixing performance was obtained with the SLM. Numerical and experimental results confirm that efficient mixing is successfully achieved from the SLM over the wide range of Re. Due to the simple and mass producible geometry of the efficient micromixer, SLM proposed in this study, the SLM can be easily applied to integrated microfluidic systems, such as micro-total-analysis-systems or lab-on-a-chip systems.X11159165sciescopu

    Disposable Integrated Microfluidic Biochip for Blood Typing by Plastic Microinjection Moulding

    Get PDF
    Blood typing is the most important test for both transfusion recipients and blood donors. In this paper, a low cost disposable blood typing integrated microfluidic biochip has been designed, fabricated and characterized. In the biochip, flow splitting microchannels, chaotic micromixers, reaction microchambers and detection microfilters are fully integrated. The loaded sample blood can be divided by 2 or 4 equal volumes through the flow splitting microchannel so that one can perform 2 or 4 blood agglutination tests in parallel. For the purpose of obtaining efficient reaction of agglutinogens on red blood cells (RBCs) and agglutinins in serum, we incorporated a serpentine laminating micromixer into the biochip, which combines two chaotic mixing mechanisms of splitting/recombination and chaotic advection. Relatively large area reaction microchambers were also introduced for the sake of keeping the mixture of the sample blood and serum during the reaction time before filtering. The gradually decreasing multi-step detection microfilters were designed in order to effectively filter the reacted agglutinated RBCs, which show the corresponding blood group. To achieve the cost-effectiveness of the microfluidic biochip for disposability, the biochip was realized by the microinjection moulding of COC (cyclic olefin copolymer) and thermal bonding of two injection moulded COC substrates in mass production with a total fabrication time of less than 20 min. Mould inserts of the biochip for the microinjection moulding were fabricated by SU-8 photolithography and the subsequent nickel electroplating process. Human blood groups of A, B and AB have been successfully determined with the naked eye, with 3 mu l of the whole sample bloods, by means of the fabricated biochip within 3 min.X11100104sciescopu

    Approval voting and scoring rules with common values

    Get PDF
    We compare approval voting with other scoring rules for environments with common values and private information. For finite electorates, the best equilibrium under approval voting is superior to plurality rule or negative voting. For large electorates, if any scoring rule yields a sequence of equilibria that efficiently aggregates information, then approval voting must do so as well

    Class III obesity is a risk factor for the development of acute on chronic liver failure in patients with decompensated cirrhosis

    Get PDF
    BACKGROUND AND AIMS: Acute on chronic liver failure (ACLF) is a syndrome of systemic inflammation and organ failures. Obesity, also characterized by chronic inflammation, is a risk factor among patients with cirrhosis for decompensation, infection, and mortality. Our aim was to test the hypothesis that obesity predisposes to ACLF development in patients with decompensated cirrhosis. METHODS: We examined the United Network for Organ Sharing (UNOS) database, from 2005-2016, characterizing patients at wait-listing as non-obese (BMI < 30), obese class I-II (BMI 30-39.9) and obese class III (BMI≥40). ACLF was determined based on the CANONIC study definition. We used Cox proportional hazards regression to assess the association between obesity and ACLF development at liver transplantation (LT). We confirmed our findings using the Nationwide Inpatient Sample (NIS), years 2009-2013, using validated diagnostic coding algorithms to identify obesity, hepatic decompensation and ACLF. Logistic regression evaluated the association between obesity and ACLF occurrence. RESULTS: Among 387,884 with decompensated cirrhosis, 116,704 patients (30.1%) were identified as having ACLF in both databases. Multivariable modeling from the UNOS database revealed class III obesity to be an independent risk factor for ACLF at LT (HR=1.24, 95% CI 1.09-1.41, p<0.001). This finding was confirmed using the NIS (OR=1.30, 95% CI 1.25-1.35, p<0.001). Regarding specific organ failures, analysis of both registries demonstrated patients with class I-II and class III obesity had greater prevalence of renal failure. CONCLUSION: Class III obesity is a newly identified risk factor for ACLF development in patients with decompensated cirrhosis. Obese patients have a particularly higher prevalence of renal failure as a component of ACLF. These findings have important implications regarding stratifying risk and preventing the occurrence of ACLF. LAY SUMMARY: In this study, we identify that among patients with decompensated cirrhosis, class III obesity is a modifiable risk factor for the development of acute on chronic liver failure (ACLF). We further demonstrate that regarding the specific organ failures associated with ACLF, renal failure is significantly more prevalent among obese patients, particularly class III obesity. These findings underscore the importance of weight management in cirrhosis, to reduce the risk of ACLF. Patients with class III obesity should be monitored closely for the development of renal failure

    Molecular lens of the nonresonant dipole force

    Get PDF
    A cylindrical molecular lens is formed by focusing a nanosecond IR laser pulse. Trajectories of a CS2 molecular beam deflected by the lens are traced using the velocity map imaging technique. The characteristic lens parameters including the focal length, minimum beam width, and distance to the minimum-width position are determined. The laser intensity dependence of the parameters is in good agreement with theoretical predictions. Exciting possibilities for molecular optics and a new type of optical chromatography are opened up.open394

    30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

    Full text link
    We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances

    Influence of wiring cost on the large-scale architecture of human cortical connectivity

    Get PDF
    In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain

    Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort

    Get PDF
    BACKGROUND: Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. OBJECTIVES: We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. METHODS: Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000–2009 follow-up period when matching census tract–level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. RESULTS: PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. CONCLUSIONS: Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5–mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. CITATION: Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484–490; http://dx.doi.org/10.1289/ehp.150967
    corecore