6 research outputs found

    Propagation Characteristics in a Circular Waveguide for Feasibility Study of Terabit DSL

    Get PDF
    Due to the demand for higher data rates and greater download speeds by users and increasing number of deployed devices providing content-rich data, new cost-effective technologies which utilizes the concept of waveguides over copper that can enable the realization of terabit DSL need to be explored to meet the required demands. This paper presents the propagation characteristics of circular waveguide which include reflection/transmission coefficient, attenuation coefficient and surface current. The design and simulation process have been carried out using CST Microwave Studios at the frequency of 100GHz to 300GHz. The circular waveguide is varied for various radius and length to observe for the respective propagation characteristics. Based on the result, it is shown that the reflection coefficient decreases with the increase in radius and length and it is below -50dB. Besides, with the increase in frequency, the transmission coefficient shows that the waveguide is able to achieve 100% transmission (0dB) at 200GHz with the increase in radius and length. Moreover, the attenuation coefficient of the waveguide is low which is about 0.0022dB/mm and maximum surface current intensity of 81.5556A/m. The results obtained can be considered the first step on understanding the propagation characteristics of waveguide at terahertz frequency range towards the realization of Terabit DSL

    Exploiting surface plasmon with dielectric coating in copper wires waveguide for the propagation of terahertz waves

    Get PDF
    Recently, metallic wires have gained popularity for utilization as waveguides in propagating sub-THz and THz waves through surface plasmonic polaritons (SPPs). Single and double metallic wire waveguides have demonstrated the ability to propagate these high frequencies with minimal loss and nearly zero dispersion. However, wires typically installed commercially are often coated with dielectric material. Therefore, this paper investigated the effects of using two and four metallic copper wires, both with and without dielectric coating. The impact of various gap distances on different propagation characteristics was also analyzed. Computer Simulation Technology (CST) Microwave Studio was employed in this study for electromagnetic simulations of both uncoated and coated configurations of two and four wires. The introduction of a dielectric coating led to an enhancement in reducing conductor losses and improving energy confinement, with the goal of enhancing the overall efficiency of waveguide signal propagation

    Exploiting surface plasmon with dielectric coating in copper wires waveguide for the propagation of terahertz waves

    Get PDF
    Recently, metallic wires have gained popularity for utilization as waveguides in propagating sub-THz and THz waves through surface plasmonic polaritons (SPPs). Single and double metallic wire waveguides have demonstrated the ability to propagate these high frequencies with minimal loss and nearly zero dispersion. However, wires typically installed commercially are often coated with dielectric material. Therefore, this paper investigated the effects of using two and four metallic copper wires, both with and without dielectric coating. The impact of various gap distances on different propagation characteristics was also analyzed. Computer Simulation Technology (CST) Microwave Studio was employed in this study for electromagnetic simulations of both uncoated and coated configurations of two and four wires. The introduction of a dielectric coating led to an enhancement in reducing conductor losses and improving energy confinement, with the goal of enhancing the overall efficiency of waveguide signal propagation

    Low Loss THz Waveguides and Its Potentials towards 6G Communication: A Brief Chronicle Review

    No full text
    Advancement in technology has opened the doors for the terahertz (THz) frequency range to be applied in different fields for various applications. The future communication technology, especially 6G, will also intend to utilize the THz frequency band due to its large bandwidth that has the capabilities to achieve a high data rate. Great losses are presented in the early research into terahertz transmission medium. It is critical to design an appropriate waveguide that can integrate the THz waves into the system efficiently with minimum loss and provides the ease of transmission of data and overcomes the free space loss issues. Communication, sensing, and other application parameters are highly affected by transmission losses; therefore, low transmission loss and dispersion loss waveguide designs are required for proper utilization. In this paper, the review on reduction in the transmission loss in different types of waveguides operating at the Terahertz frequency range is studied. The design and the experimental setup for several classes of THz waveguides for minimizing transmission loss are also discussed. The review study shows that these waveguides can be a promising transmission medium for future 6G communicatio

    Suitable Turbine Selection based on the Parameters of a Potential Site at Sarawak, Malaysia

    No full text
    The tidal range is a renewable energy source. In Malaysia, most of the produced renewable energy is generated from the exploitation of the tidal range. The main purpose of this research is to determine a suitable system to produce tidal range energy from a potential site. A turbine selection chart is used. The mean tidal range of Kuching Barrage is 4.2m and the maximum flow rate over a gate is 226.9m3/s. Therefore, for the extraction of electrical power, a bulb-type turbine with a rated power of 5.2MW is identified as suitable to be deployed at the site

    Exploiting Surface Plasmon with Dielectric Coating in Copper Wires Waveguide for the Propagation of Terahertz Waves

    No full text
    Recently, metallic wires have gained popularity for utilization as waveguides in propagating sub-THz and THz waves through surface plasmonic polaritons (SPPs). Single and double metallic wire waveguides have demonstrated the ability to propagate these high frequencies with minimal loss and nearly zero dispersion. However, wires typically installed commercially are often coated with dielectric material. Therefore, this paper investigated the effects of using two and four metallic copper wires, both with and without dielectric coating. The impact of various gap distances on different propagation characteristics was also analyzed. Computer Simulation Technology (CST) Microwave Studio was employed in this study for electromagnetic simulations of both uncoated and coated configurations of two and four wires. The introduction of a dielectric coating led to an enhancement in reducing conductor losses and improving energy confinement, with the goal of enhancing the overall efficiency of waveguide signal propagation
    corecore