142 research outputs found

    The use of single dose of oral misoprostol (600”g) at home in management of first trimester miscarriages in El-Mukala, Yemen

    Get PDF
    Background: In the management of first trimester miscarriage, the use of oral misoprostol is beneficial for patients as it offers a more discrete and less invasive route for those women who find vaginal administration unacceptable. In spite of high incidence of side-effects from use of oral misoprostol women still found oral route satisfactory.Methods: This study was a prospective cohort study done at El-Mukala maternal and child hospital and Hadhramout maternal and child university hospital in the period between 1st October 2014 and 30th September 2015. All pregnant women (less than 14 weeks) who were diagnosed as an embryonic pregnancy or missed miscarriage were included in the study. Every patient received single dose of oral misoprostol 600 ”g in half full stomach at home. The primary outcome measure was complete miscarriage rate.Results: One-hundred women were included in the study. The mean age of study participants was 26.25±4.08 years, the mean BMI was 27.35±3.6 while the mean parity was 2.6±1.5.Ten cases needed emergency surgical evacuation within the period of first 48 hours. Complete miscarriage had occurred in 75 cases, 65 of them in the first 48 hours. Fifteen cases presented by incomplete miscarriage after waiting for one week. They needed surgical evacuation at the end of 7 days due to still considerable intrauterine contents.Conclusions: In our closed community in El-Mukala, Yemen, the use of oral misoprostol in single dose of 600 ”g at home as a method for termination of first-trimester miscarriage was effective (75%, success rate), tolerable regarding side effects, has the advantage of high confidentiality and privacy resulting in good satisfaction

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Black Ginseng and Its Saponins: Preparation, Phytochemistry and Pharmacological Effects

    No full text
    Black ginseng is a type of processed ginseng that is prepared from white or red ginseng by steaming and drying several times. This process causes extensive changes in types and amounts of secondary metabolites. The chief secondary metabolites in ginseng are ginsenosides (dammarane-type triterpene saponins), which transform into less polar ginsenosides in black ginseng by steaming. In addition, apparent changes happen to other secondary metabolites such as the increase in the contents of phenolic compounds, reducing sugars and acidic polysaccharides in addition to the decrease in concentrations of free amino acids and total polysaccharides. Furthermore, the presence of some Maillard reaction products like maltol was also engaged. These obvious chemical changes were associated with a noticeable superiority for black ginseng over white and red ginseng in most of the comparative biological studies. This review article is an attempt to illustrate different methods of preparation of black ginseng, major chemical changes of saponins and other constituents after steaming as well as the reported biological activities of black ginseng, its major saponins and other metabolites

    Synthesis and Molecular Docking of Some Grossgemin Amino Derivatives as Tubulin Inhibitors Targeting Colchicine Binding Site

    No full text
    Six amino derivatives of grossgemin (2–7) were synthesized according to the reported essential pharmacophoric features of colchicine binding site inhibitors (CBSIs). The derivatives 4–6 were obtained for the first time. The pharmacophoric features of 2–7 as CBSIs were studied to be almost identical. Furthermore, the 3D-flexible alignment of compound 5 as a representative example with colchicine showed a very good overlapping. In agreement, compounds 2–7 docked into CBS with binding modes very similar to that of colchicine and exhibited binding free energies of −24.57, −25.05, −32.16, −29.34, −26.38, and −26.86 (kcal/mol), respectively. The binding free energies of 4–7 were better than that of colchicine (−26.13 kcal/mol) with a noticeable superiority to compound 4

    A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease

    No full text
    Among a group of 310 natural antiviral natural metabolites, our team identified three compounds as the most potent natural inhibitors against the SARS-CoV-2 main protease (PDB ID: 5R84), Mpro. The identified compounds are sattazolin and caprolactin A and B. A validated multistage in silico study was conducted using several techniques. First, the molecular structures of the selected metabolites were compared with that of GWS, the co-crystallized ligand of Mpro, in a structural similarity study. The aim of this study was to determine the thirty most similar metabolites (10%) that may bind to the Mpro similar to GWS. Then, molecular docking against Mpro and pharmacophore studies led to the choice of five metabolites that exhibited good binding modes against the Mpro and good fit values against the generated pharmacophore model. Among them, three metabolites were chosen according to ADMET studies. The most promising Mpro inhibitor was determined by toxicity and DFT studies to be caprolactin A (292). Finally, molecular dynamics (MD) simulation studies were performed for caprolactin A to confirm the obtained results and understand the thermodynamic characteristics of the binding. It is hoped that the accomplished results could represent a positive step in the battle against COVID-19 through further in vitro and in vivo studies on the selected compounds

    Genetic divergence of two casein genes and correlated milk traits in Maghrebi camels

    No full text
    © 2022, The Author(s), under exclusive licence to Plant Science and Biodiversity Centre, Slovak Academy of Sciences (SAS), Institute of Zoology, Slovak Academy of Sciences (SAS), Institute of Molecular Biology, Slovak Academy of Sciences (SAS).Despite the key role of casein genes and their effect on quantitative traits and technological assets of milk, few studies manipulated it in camels, unlike other ruminants. Thus, this investigation was performed to lighten up the genetic polymorphism of CSN2 and CSN3 genes, in Maghrebi camels, via PCR-SSCP and DNA sequencing tools, by measuring the impacted milk composition traits. Sixty-eight blood samples were collected from Maghrebi camels in Mersa Matrouh, Egypt. Also, 68 milk samples were collected at different stages of the lactation period. Protein, fat, lactose, total solid, and ash were estimated in all milk samples by biochemical methods. The results of the PCR-SSCP and the sequence analysis showed two genotypes (CC and CA) in CSN2 gene with one SNP (41 T > G) for CC genotype and two SNPs (41 T > G and 462A > C) for CA genotype, as showed three genotypes (AA, AT, and TT) in CSN3 gene with two SNPs (42C > A and 346 T > A) for AA genotype, two SNPs (42C > A and 100 C > T) for TT genotype, and four SNPs (42C > A, 100C > T, 238 T > G, and 346 T > A) for AT genotype. Allele C of CSN2 gene affected milk fat only at the first day and the first seven days of lactation period, while allele T of CSN3 gene affected both the studied milk composition initiated from the first seven days to the end of the lactation period. The genetic discrimination of the understudied genes may be utilized as a valuable marker in the selection of superior animals, through the favorable alleles and genotypes to improve the camel milk composition.N

    Epstein–Barr virus and cytomegalovirus coinfection in Egyptian COVID-19 patients

    No full text
    Abstract Background Reactivation of herpesviruses such as Epstein–Barr virus (EBV) and cytomegalovirus (CMV) in COVID-19 patients reported in many studies in different countries during the pandemic. We aimed to measure prevalence of this coinfection in Egyptian COVID-19 patients with elevated liver enzymes and its relation to the severity and the outcome of COVID-19 infection in those patients. Methods A cross-sectional study was carried out on 110 COVID-19 patients with elevated liver enzymes regardless the severity of COVID-19 disease. All patients were subjected to medical history, clinical examination, laboratory investigations, high-resolution computed tomography chest (HRCT chest). Epstein–Barr virus (EBV) and Human cytomegalovirus (HCMV) were determined by VCA IgM and CMV IgM respectively by enzyme-linked immunosorbent assay (ELISA). Results Of the included 110 patients with COVID-19 illness, 5 (4.5%) were Epstein–Barr virus seropositive and 5 (4.5%) were human cytomegalovirus seropositive. Regarding the symptoms, the incidence of fever in the EBV and CMV seropositive group was apparently higher than that in the EBV and CMV seronegative group. In lab tests, the platelets and albumin of EBV and CMV seropositive group decreased more significantly than EBV and HCMV seronegative group, and serum ferritin, D-dimer, and C-reactive protein show higher values in seropositive group than in seronegative group but not statistically significant. Seropositive group had received higher doses of steroids than seronegative group. The median of hospital stay in seropositive group was (15 days) nearly double that of seronegative group with statistically significant difference between both groups. Conclusion Coinfection of EBV and CMV in COVID-19 Egyptian has no effect on the disease severity or the clinical outcome of the disease. But those patients had higher hospital stay duration

    The Computational Preventive Potential of the Rare Flavonoid, Patuletin, Isolated from Tagetes patula, against SARS-CoV-2

    No full text
    The rare flavonoid, patuletin, was isolated from the flowers of Tagetes patula growing in Egypt. The rarity of the isolated compound inspired us to scrutinize its preventive effect against COVID-19 utilizing a multi-step computational approach. Firstly, a structural similarity study was carried out against nine ligands of nine SARS-CoV-2 proteins. The results showed a large structural similarity between patuletin and F86, the ligand of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Then, a 3D-Flexible alignment study of patuletin and F86 verified the proposed similarity. To determine the binding opportunity, patuletin was docked against the RdRp showing a correct binding inside its active pocket with an energy of −20 kcal/mol that was comparable to that of F86 (−23 kcal/mol). Following, several MD simulations as well as MM-PBSA studies authenticated the accurate binding of patuletin in the RdRp via the correct dynamic and energetic behaviors over 100 ns. Additionally, in silico ADMET studies showed the general safety and drug-likeness of patuletin

    Phytoestrogen <i>ÎČ</i>-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses

    No full text
    Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds ÎČ-sitosterol and ÎČ-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status “viricidal effect”. On a molecular level, several molecular docking studies suggested that ÎČ-sitosterol and ÎČ-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen ÎČ-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen ÎČ-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of ÎČ-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates
    • 

    corecore