41 research outputs found

    Performance of footing with single side micro-piles adjacent to slopes

    Get PDF
    This research was initiated in order to investigate the capability of rigid strip one side micro-piles footings in stabilizing sand slopes. A physical model was designed and constructed for micro-piles footings resting on dense sand. Measuring devices were arranged; load-settlement measurements of the model footings were recorded; photos were captured and observations were documented. Different footing configurations located at variable distances from slope edge were tested; five groups of micro-piles depths were inspected and different eccentric vertical so as oblique loads were examined to investigate its capability of stabilizing the slopes. Measurements were plotted and analyzed. Comparison was carried out among the inspected cases. Results indicated that a significant enhancement to the bearing capacity of single side micro-piles footing was documented with the increase of micro-piles depth. It reached about 7.9 times that of footing without micro-piles

    Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance

    No full text
    Circumvention of cancer drug resistance is one of the major investigations in nanomedicine. In this regard, nanotechnology-based drug delivery has offered various implications. However, protein-based nanocarriers have been a versatile choice compared to other nanomaterials, provided by their favorable characteristics and safety profiles. Specifically, albumin-based nanoparticles have been demonstrated to be an effective drug delivery system, owing to the inherent targeting modalities of albumin, through gp60- and SPARC-mediated receptor endocytosis. Furthermore, surface functionalization was exploited for active targeting, due to albumin’s abundance of carboxylic and amino groups. Stimuli-responsive drug release has also been pertained to albumin nano-systems. Therefore, albumin-based nanocarriers could potentially overcome cancer drug resistance through bypassing drug efflux, enhancing drug uptake, and improving tumor accumulation. Moreover, albumin nanocarriers improve the stability of various therapeutic cargos, for instance, nucleic acids, which allows their systemic administration. This review highlights the recent applications of albumin nanoparticles to overcome cancer drug resistance, the nano-fabrication techniques, as well as future perspectives and challenges

    Behavior of circular footing resting on laterally confined granular reinforced soil

    Get PDF
    Three dimensional physical laboratory models were examined to investigate the influence of soil confinement on circular footing behavior resting on granular soil. A total of 23 model footing tests were performed. Nine hollow cylinders with various heights and diameters were installed around the footing model for soil confinement purpose. Square geogrid layers were placed at different depths beneath the bottom edge of the cylinder. Different parameters such as height, diameter, and depth of the cylinder were studied. Moreover, number, width, and position of the geogrid layers were, also, investigated. The response of a non-confined footing model was set as reference for comparison purpose. The results showed enhancement in the bearing capacity of the soil as well as a reduction in its settlement in all used configurations compared with the reference case. It is, however, observed that on increasing the number of geogrid layers more than one layer had a small significant effect on the footing behavior. Moreover, placing geogrid layers underneath the cylinders improves the bearing capacity up to 7.5 times that of the non-confined case. Footing with cylinder of a diameter nearly equal to the footing diameter behaves as one unit like a deep foundation. This behavior pattern was no longer observed with large cylinder diameter and small height. Finally, the study ends up with recommendations for selection of cylinder dimensions to maximize the bearing capacity. The benefits of using geogrid layers were also highlighted

    The added value of relative amide proton transfer (rAPT) to advanced multiparametric MR imaging for brain glioma characterization

    No full text
    Abstract Background Differentiation between the grades of brain gliomas is a crucial step in the management of patients. The gold standard technique for grading is biopsy but MR imaging may play a more substantial role as a non-invasive method by using promising molecular sequences. Our purpose was to assess the added value of the relative amide proton transfer signal [rAPT] to advanced multiparametric MRI protocol. Methods We enrolled a pathologically confirmed 102 patients with low-grade glioma [n = 38] and high-grade glioma [n = 64] who underwent advanced multiparametric MRI protocol on the same scanner. The protocol included anatomic, diffusion, MRS, and perfusion sequences. The newly added sequence was Amide proton transfer. The rAPT values of all lesions were investigated by two neuroradiologists to assess the inter-rater agreement of using interclass correlation coefficient [ICC]. HGGs demonstrated significantly higher mean values of relative cerebral blood volume (rCBV), choline to creatine ratio (Cho/cr), and rAPT with lower Apparent diffusion coefficient (ADC) values compared to LGGs. ROC analyses revealed medium to high diagnostic performance with an AUC of 0.941 for rAPT, 0.907 for mean ADC, and 0.906 for rCBV. Discriminant function analysis of two models, the first one included mean ADC, rCBV, and Cho/Cr, while in the second Model, we added rAPT to them. Model two demonstrated higher accuracy and a significant difference in the AUC after adding the rAPT. The inter-rater agreement was reasonable (ICC 0.61). Conclusions rAPT adds significant value to multiparametric MRI for distinguishing LGG from HGG
    corecore