17 research outputs found

    Iron oxychloride as an efficient catalyst for selective hydroxylation of benzene to phenol

    Get PDF
    Selective hydroxylation of benzene is a felicitous strategy for the production of phenol that is deemed to be an alternative to conventional processes. Thus, the development of a durable and highly efficient catalyst for the selective hydroxylation of benzene should be a key topic. In this work, FeOCl was prepared by a chemical vapor transition method and characterized using various techniques including XRD, TEM, Raman spectroscopy, N2 adsorption–desorption, DLS, and TGA. The prepared FeOCl was applied as a heterogeneous catalyst in benzene hydroxylation, and the reaction conditions were optimized. The acquired data manifested that FeOCl has shown superiority over the other reported catalysts utilized in benzene hydroxylation. The superiority of FeOCl is attributed to the facile self-redox potential of FeOCl and its remarkable ability for the production of an overwhelming amount of hydroxyl radicals in a short period of time. The catalyst recovery and reuse test showed that FeOCl is able to endure the harsh conditions of benzene hydroxylation for four runs. The mechanism of benzene hydroxylation using FeOCl as a catalyst in the presence of hydrogen peroxide as an oxidant was also illustrated

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Characterization and some physical studies of PVA/PVP filled with MWCNTs

    No full text
    Pristine films of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blend filled with gradient contents of (MWCNTs) multi-walled carbon nanotubes have been prepared using ordinary casting technique. Fourier transform infrared (FT-IR) revealed the existence of main characteristic peaks corresponding to vibrational groups that characterized the synthesized samples. The interaction between nano-composite components was indicated by variation of main vibrational bands in the spectral range 1500–1750 cm−1. X-ray diffraction (XRD) confirms the structural modification in PVA/PVP matrix due to MWCNTs filling. Transmission electron microscopy (TEM (shows the presence of MWCNTs with a diameter between 80 and 30 nm and length of about several micrometers. Scanning electron microscopy (SEM) used to approve the homogenous nature of prepared samples. The absorption coefficient spectra show the appearance of two absorption peaks at 290 and 620 nm attributed to n → π* and π → π* electronic transitions. The optical energy gap (Eg) have been obtained from the indirect allowed transition. It was found that, Eg decrease with increasing MWCNTs content. Analysis of refractive index n showed a normal dispersion in the wavelength range 866–2500 nm, as well as an anomalous dispersion in the wavelength range 190–866 nm. The oscillator parameters (oscillator energy and dispersion energy) were calculated. The decrease in optical energy gap and the increase in refractive index due to filling with MWCNTs suppose the possibility of their use in optical devices. Keywords: MWCNTs, PVA, PVP, Refractive index, FTIR, UV/vi

    Glycolysis of Poly(ethylene terephthalate) Catalyzed by the Lewis Base Ionic Liquid [Bmim][OAc]

    No full text
    The glycolysis of poly­(ethylene terephthalate) (PET) was studied using 1-butyl-3-methylimidazolium acetate ([Bmim]­[OAc]) as a catalyst. The effects of temperature, time, ethylene glycol dosage, PET amount, and [Bmim]­[OAc] dosage on the glycolysis reaction were examined. The results revealed that [Bmim]­[OAc] has a PET conversion of 100% and a bis­(2-hydroxyethyl)­terephthalate (BHET) yield of 58.2% under the optimum conditions of 1.0 g of [Bmim]­[OAc] with 20 g of ethylene glycol in the presence of 3.0 g of PET at 190 °C after 3 h of glycolysis. The ionic liquid could be reused up to six times with no apparent decrease in the conversion of PET or yield of BHET. The pH plays a major role in explaining the proposed mechanism of glycolysis using the Lewis base ionic liquid [Bmim]­[OAc]. The kinetics of the reaction was first-order with an activation energy of 58.53 kJ/mol
    corecore