22 research outputs found

    Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst

    Get PDF
    Natural Kaolin Clay was calcined and treated by sulfuric acid. The resulting solid acid catalyst was characterized by FTIR, TGA, and X-ray powder diffraction (XRD) and tested for isobutene oligomerization in a gas phase. The characterization results showed that the acid treated clay underwent chemical and structural transformations. After acid treatment, the Si/Al ratio was increased, and the crystalline raw clay became amorphous. The effects of various parameters such as reaction temperature, reaction time and contact time on isobutene oligomerization were investigated. Catalytic tests showed that isobutene oligomerization led to dimers and trimers as major products. Tetramers were obtained as by- products. At relatively high reaction temperatures and long contact times, the conversion was enhanced while the selectivity of dimers was decreased in favor of higher oligomers.

    Reactivity of Heteropolytungstate and Heteropolymolybdate Metal Transition Salts in the Synthesis of Dimethyl Carbonate from Methanol and CO2

    Get PDF
    A series of Keggin-type heteropoly compounds (HPC) having different countercations (Co, Fe) and different addenda atoms (W, Mo) were synthesized and characterized by means of Fourier-Transform Infrared Spectrometer (FT-IR) and X-ray powder diffraction (XRD). The catalytic properties of the prepared catalysts for the dimethyl carbonate (DMC) synthesis from CO2 and CH3OH were investigated. The experimental results showed that the catalytic activity is significantly influenced by the type of the countercation and addenda atoms transition metal. Among the catalysts examined, Co1.5PW12O40 is the most active for the DMC synthesis, owing to the synergetic effect between Co and W. Investigating the effect of the support showed that the least acidic one (Al2O3) enhanced the conversion but decreased the DMC selectivity in favor of that of methyl formate (MF), while that of dimethoxy methane remained stable

    The Effect of Preventive Measures and Vaccination against SARS-CoV-2 on the Infection Risk, Treatment, and Hospitalization. A Cross-Sectional Study of Algeria

    Get PDF
    Coronavirus disease (COVID-19) caused by the SARS-CoV-2 virus continues to afflict many countries around the world. The resurgence of COVID-19 cases and deaths in many countries shows a complacency in adhering to preventive guidelines. Consequently, vaccination continues to be a crucial intervention to reduce the effects of this pandemic. This study investigated the impact of preventive measures and COVID-19 vaccination on the infection, medication, and hospitalization. A cross-sectional online survey was conducted between 23 December 2021 and 12 March 2022 in Algeria. To evaluate the effectiveness of strategies aimed at avoiding and minimizing SARS-CoV-2 infection and severity, a questionnaire was created and validated. Descriptive statistics and logistic regression analyses were computed to identify associations between dependent and independent variables. Variables with a p-value of < 0.05 were considered statistically significant. Our results indicated that out of 2294 answers received, only 16% of our sample was vaccinated, and more than 60% did not apply preventive guidelines. As a result, 45% were infected with SARS-CoV-2, 75% took treatment (even preventive), and 9% were hospitalized. The logistic regression showed that the impact of preventive measures on the unvaccinated is statistically not significant (OR: 0.764, 95% CI = 0. 555-1.052; p = 0.09). However, this relationship changes significantly for people who are vaccinated (OR: 0.108, 95% CI = 0.047-0.248; p < 0.0001). Our results also demonstrated that the impact of protective measures on non-vaccinated individuals is statistically significant in reducing the need to receive anti-COVID-19 treatments (OR: 0.447, 95% CI = 0.321-0.623; p < 0.0001). Furthermore, the results showed that the impact of preventive measures on the non-vaccinated population is also statistically significant in reducing the risk of hospitalization (OR: 0.211, 95% CI = 0.081-0.548; p < 0.0001). Moreover, vaccinated individuals who neglect preventive measures must take the COVID-19 medication at a rate of 3.77 times (OR: 3.77) higher than those who follow preventive measures and are vaccinated. In short, our findings demonstrate the importance of combining preventive measures and vaccination in order to fight against the pandemic. Therefore, we advise the Ministry of Health and relevant authorities to put more effort into enhancing public knowledge about the COVID-19 infection and vaccination through education and awareness initiatives. Parallel to implementing vaccination as additional preventive strategy, behavioral change initiatives must be improved to encourage adherence to COVID-19 prevention recommendations

    The Cationic Ring-Opening Polymerization of Tetrahydrofuran with 12-Tungstophosphoric Acid

    No full text
    The cationic ring-opening polymerization reaction of tetrahydrofuran at 20 ºC was catalyzed by H3PW12O40·13H2O as solid acid catalyst. The effect of the proportions of acetic anhydride and catalyst, reaction time and support on the polymerization reaction was investigated. It has been found that the yield and the viscosity of the polymer depend on the proportion of acetic anhydride, the presence of the latter in the reactant mixture being required for the ring-opening. The catalytic activity of the alumina-supported heteropolyacid results showed that Brønsted acid sites are more effective than Lewis ones for the cationic ring-opening polymerization

    Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst

    Get PDF
    Natural Kaolin Clay was calcined and treated by sulfuric acid. The resulting solid acid catalyst was characterized by FTIR, TGA, and X-ray powder diffraction (XRD) and tested for isobutene oligomerization in a gas phase. The characterization results showed that the acid treated clay underwent chemical and structural transformations. After acid treatment, the Si/Al ratio was increased, and the crystalline raw clay became amorphous. The effects of various parameters such as reaction temperature, reaction time and contact time on isobutene oligomerization were investigated. Catalytic tests showed that isobutene oligomerization led to dimers and trimers as major products. Tetramers were obtained as by- products. At relatively high reaction temperatures and long contact times, the conversion was enhanced while the selectivity of dimers was decreased in favor of higher oligomers. Copyright © 2017 BCREC GROUP. All rights reserved Received: 27th October 2016; Revised: 21st December 2016; Accepted: 22nd December 2016 How to Cite: Aldhayan, D., Aouissi, A. (2017). Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1): 119-126 (doi:10.9767/bcrec.12.1.758.119-126) Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.758.119-12

    Synergistic effect between CO2 and H2O2 on ethylbenzene oxidation catalyzed by carbon supported heteropolyanion catalysts

    No full text
    A series of Keggin heteropolytungstate salts (M1.5PW12O40, M=Cu, Co, Zn and Fe) were prepared and characterized utilizing inductively coupled plasma spectrometry (ICP), Fourier transform infrared (FTIR) spectra, and ultraviolet-visible (UV-Vis) light spectroscopy. The as-prepared catalysts were tested for the oxidation of ethylbenzene by using carbon dioxide/hydrogen peroxide (CO2/H2O2) as the oxidizing agent system under solvent-free conditions. The results indicated that the heteropolytungstates catalyzed the side chain oxidation of ethylbenzene leading to acetophenone as a major product. The effect of various reaction parameters on ethylbenzene oxidation over the best catalyst of the series, namely Co1.5PW12O40 loaded on activated carbon (AC), was investigated. It was found that the selectivity depends strongly on the reaction temperature. Higher reaction temperatures reduce the conversion due to the decomposition of H2O2. Oxidation by a large amount of H2O2 decreases the conversion owing to a decrease of the solubility of ethylbenzene in an aqueous medium, and favors the oxidation of the reaction products, which are more soluble in an aqueous medium. The increase of the CO2 pressure improves both the conversion and the selectivity of acetophenone due to the involvement of the percarbonate species (HCO4−) responsible for oxidation by oxygen transfer

    Keggin-Type Heteropolyacid for Ring-Opening Polymerization of Cyclohexene Oxide: Molecular Weight Control

    Get PDF
    Polymerization of 1,2-cyclohexene oxide (CHO) in dichloromethane was catalyzed by 12-tungstophosphoric acid (H3PW12O40·13H2O) as a super solid acid. The effect of polymerization parameters such as reaction time, temperature, and catalyst amount was investigated. The effect of acetic anhydride as a ring-opening agent was also investigated. The resulting poly(1,2-cyclohexene oxide) (PCHO) was characterized by Fourier transform infrared (FTIR), nuclear magnetic resonance spectroscopy (1HNMR), gel-permeation chromatography (GPC), and differential scanning calorimetry (DSC). It has been found that the PCHO prepared over H3PW12O40·13H2O has a stereoregularity higher than that prepared over clay and Aluminium alkoxide catalysts. The Tg value obtained is due to the microstructure but not to molecular weight. The yield and the molecular weight of the polymer depend strongly on the reaction conditions. Molecular weights can be readily controlled by changing reaction temperature, reaction time, and catalyst amount. Contrary to most polymerization reactions, the molecular weight increases with the temperature increase. Addition of acetic anhydride to the reaction medium increased the yield threefold

    Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion

    Get PDF
    The reactivity of Co1.5PW12O40 in the direct synthesis of dimethyl carbonate (DMC) from CO2 and CH3OH was investigated. The synthesized catalyst has been characterized by means of FTIR, XRD, TG, and DTA and tested in gas phase under atmospheric pressure. The effects of the reaction temperature, time on stream, and methanol weight hourly space velocity (MWHSV) on the conversion and DMC selectivity were investigated. The highest conversion (7.6%) and highest DMC selectivity (86.5%) were obtained at the lowest temperature used (200 °C). Increasing the space velocity MWHSV increased the selectivity of DMC, but decreased the conversion. A gain of 18.4% of DMC selectivity was obtained when the MWHSV was increased from 0.65 h-1 to 3.2 h-1

    Reactivity of Heteropolymolybdates and Heteropolytungstates in the Cationic Polymerization of Styrene

    No full text
    The two heteropolyacids H3PW12O40 and H3PMo12O40, and their homologous salts (NH4)3PW12O40, and (NH4)3PMo12O40 were prepared and tested in the cationic polymerization of styrene. The results showed that the heteropolytungstates were more reactive than the heteropolymolybdates. It has been found that the yield and the viscosity averagemolecular weight (Mv) of polystyrene are directly proportional to the acidity strength of the heteropolyanions (H3PW12O40 > H3PMo12O40 > (NH4)3PW12O40 > (NH4)3PMo12O40). The highest yield (68.0%) and Mv (7,930) were obtained by using H3PW12O40. In addition, H3PW12O40 polymerized the styrene under mild conditions and was recyclable, and could behave as a truly heterogeneous catalyst
    corecore