34 research outputs found

    Establishment of Dynamic Evolving Neural-Fuzzy Inference System Model for Natural Air Temperature Prediction

    Get PDF
    Air temperature (AT) prediction can play a significant role in studies related to climate change, radiation and heat flux estimation, and weather forecasting. This study applied and compared the outcomes of three advanced fuzzy inference models, i.e., dynamic evolving neural-fuzzy inference system (DENFIS), hybrid neural-fuzzy inference system (HyFIS), and adaptive neurofuzzy inference system (ANFIS) for AT prediction. Modelling was done for three stations in North Dakota (ND), USA, i.e., Robinson, Ada, and Hillsboro. The results reveal that FIS type models are well suited when handling highly variable data, such as AT, which shows a high positive correlation with average daily dew point (DP), total solar radiation (TSR), and negative correlation with average wind speed (WS). At the Robinson station, DENFIS performed the best with a coefficient of determination (R2^{2}) of 0.96 and a modified index of agreement (md) of 0.92, followed by ANFIS with R2^{2} of 0.94 and md of 0.89, and HyFIS with R2^{2} of 0.90 and md of 0.84. A similar result was observed for the other two stations, i.e., Ada and Hillsboro stations where DENFIS performed the best with R2^{2}: 0.953/0.960, md: 0.903/0.912, then ANFIS with R2^{2}: 0.943/0.942, md: 0.888/0.890, and HyFIS with R2^{2} 0.908/0.905, md: 0.845/0.821, respectively. It can be concluded that all three models are capable of predicting AT with high efficiency by only using DP, TSR, and WS as input variables. This makes the application of these models more reliable for a meteorological variable with the need for the least number of input variables. The study can be valuable for the areas where the climatological and seasonal variations are studied and will allow providing excellent prediction results with the least error margin and without a huge expenditure

    Solving Optimization Problems Using an Extended Gradient-Based Optimizer

    No full text
    This paper proposes an improved method for solving diverse optimization problems called EGBO. The EGBO stands for the extended gradient-based optimizer, which improves the local search of the standard version of the gradient-based optimizer (GBO) using expanded and narrowed exploration behaviors. This improvement aims to increase the ability of the GBO to explore a wide area in the search domain for the giving problems. In this regard, the local escaping operator of the GBO is modified to apply the expanded and narrowed exploration behaviors. The effectiveness of the EGBO is evaluated using global optimization functions, namely CEC2019 and twelve benchmark feature selection datasets. The results are analyzed and compared to a set of well-known optimization methods using six performance measures, such as the fitness function’s average, minimum, maximum, and standard deviations, and the computation time. The EGBO shows promising results in terms of performance measures, solving global optimization problems, recording highlight accuracies when selecting significant features, and outperforming the compared methods and the standard version of the GBO

    Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features

    No full text
    White Blood Cell (WBC) Leukaemia is caused by excessive production of leukocytes in the bone marrow, and image-based detection of malignant WBCs is important for its detection. Convolutional Neural Networks (CNNs) present the current state-of-the-art for this type of image classification, but their computational cost for training and deployment can be high. We here present an improved hybrid approach for efficient classification of WBC Leukemia. We first extract features from WBC images using VGGNet, a powerful CNN architecture, pre-trained on ImageNet. The extracted features are then filtered using a statistically enhanced Salp Swarm Algorithm (SESSA). This bio-inspired optimization algorithm selects the most relevant features and removes highly correlated and noisy features. We applied the proposed approach to two public WBC Leukemia reference datasets and achieve both high accuracy and reduced computational complexity. The SESSA optimization selected only 1 K out of 25 K features extracted with VGGNet, while improving accuracy at the same time. The results are among the best achieved on these datasets and outperform several convolutional network models. We expect that the combination of CNN feature extraction and SESSA feature optimization could be useful for many other image classification tasks

    Wind Power Forecasting Using Optimized Dendritic Neural Model Based on Seagull Optimization Algorithm and Aquila Optimizer

    No full text
    It is necessary to study different aspects of renewable energy generation, including wind energy. Wind power is one of the most important green and renewable energy resources. The estimation of wind energy generation is a critical task that has received wide attention in recent years. Different machine learning models have been developed for this task. In this paper, we present an efficient forecasting model using naturally inspired optimization algorithms. We present an optimized dendritic neural regression (DNR) model for wind energy prediction. A new variant of the seagull optimization algorithm (SOA) is developed using the search operators of the Aquila optimizer (AO). The main idea is to apply the operators of the AO as a local search in the traditional SOA, which boosts the SOA’s search capability. The new method, called SOAAO, is employed to train and optimize the DNR parameters. We used four wind speed datasets to assess the performance of the presented time-series prediction model, called DNR-SOAAO, using different performance indicators. We also assessed the quality of the SOAAO with extensive comparisons to the original versions of the SOA and AO, as well as several other optimization methods. The developed model achieved excellent results in the evaluation. For example, the SOAAO achieved high R2 results of 0.95, 0.96, 0.95, and 0.91 on the four datasets

    Bone metastasis detection method based on improving golden jackal optimization using whale optimization algorithm

    No full text
    Abstract This paper presents a machine learning-based technique for interpreting bone scintigraphy images, focusing on feature extraction and introducing a new feature selection method called GJOW. GJOW enhances the effectiveness of the golden jackal optimization (GJO) algorithm by integrating operators from the whale optimization algorithm (WOA). The technique’s performance is evaluated through extensive experiments using 18 benchmark datasets and 581 bone scan images obtained from a gamma camera, including 362 abnormal and 219 normal cases. The results highlight the superior predictive effectiveness of the GJOW algorithm in bone metastasis detection, achieving an accuracy of 71.79% and specificity of 91.14%. The contributions of this study include the introduction of a new machine learning-based approach for detecting bone metastasis using gamma camera scans, leading to improved accuracy in identifying bone metastases. The findings have practical implications for early detection and intervention, potentially improving patient outcomes

    Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms

    No full text
    Novel data-intelligence models developed through hybridization of an adaptive neuro-fuzzy inference system (ANFIS) with different metaheuristic algorithms, namely grey wolf optimizer (GWO), particle swarm optimizer (PSO) and whale optimization algorithm (WOA), are proposed for daily river flow prediction of the Taleghan River, which is the major source of potable water for Tehran, the capital of Iran. Gamma test (GT) was used for the determination of input variables for the models. The ANFIS-WOA model was found to exhibit the best performance in prediction of river flow according to root mean square error (RMSE ≈ 3.75 m3.s−1) and Nash-Sutcliffe efficiency (NSE ≈ 0.93). It improved the prediction performance of the classical ANFIS model by 6.5%. The convergence speed of ANFIS-WOA was also found to be higher compared to other hybrid models. The success of the ANFIS-WOA model indicates its potential for use in the simulation of highly nonlinear daily rainfall–runoff relationships

    A Modified Adaptive Neuro-Fuzzy Inference System Using Multi-Verse Optimizer Algorithm for Oil Consumption Forecasting

    No full text
    Oil is the primary source of energy, therefore, oil consumption forecasting is essential for the necessary economic and social plans. This paper presents an alternative time series prediction method for oil consumption based on a modified Adaptive Neuro-Fuzzy Inference System (ANFIS) model using the Multi-verse Optimizer algorithm (MVO). MVO is applied to find the optimal parameters of the ANFIS. Then, the hybrid method, namely MVO-ANFIS, is employed to forecast oil consumption. To evaluate the performance of the MVO-ANFIS model, a dataset of two different countries was used and compared with several forecasting models. The evaluation results show the superiority of the MVO-ANFIS model over other models. Moreover, the proposed method constitutes an accurate tool that effectively improved the solution of time series prediction problems

    Enhanced Marine Predators Algorithm for Solving Global Optimization and Feature Selection Problems

    No full text
    Feature selection (FS) is applied to reduce data dimensions while retaining much information. Many optimization methods have been applied to enhance the efficiency of FS algorithms. These approaches reduce the processing time and improve the accuracy of the learning models. In this paper, a developed method called MPAO based on the marine predators algorithm (MPA) and the “narrowed exploration” strategy of the Aquila optimizer (AO) is proposed to handle FS, global optimization, and engineering problems. This modification enhances the exploration behavior of the MPA to update and explore the search space. Therefore, the narrowed exploration of the AO increases the searchability of the MPA, thereby improving its ability to obtain optimal or near-optimal results, which effectively helps the original MPA overcome the local optima issues in the problem domain. The performance of the proposed MPAO method is evaluated on solving FS and global optimization problems using some evaluation criteria, including the maximum value (Max), minimum value (Min), and standard deviation (Std) of the fitness function. Furthermore, the results are compared to some meta-heuristic methods over four engineering problems. Experimental results confirm the efficiency of the proposed MPAO method in solving FS, global optimization, and engineering problems
    corecore