18 research outputs found
Mapping of heavy metal contamination in alluvial soils of the Middle Nile Delta of Egypt
Areas contaminated by heavy metals were identified in the El-Gharbia Governorate (District) of Egypt. Identification used remote sensing and Geographical Information Systems (GIS) as the main research tools. Digital Elevation Models (DEM), Landsat 8 and contour maps were used to map physiographic units. Nine soil profiles were sampled in different physiographic units in the study area. Geochemical analysis of the 33 soil samples was conducted using X-ray fluorescence spectrometry (XRF). Vanadium (V), nickel (Ni), chromium (Cr), copper (Cu) and zinc (Zn) concentrations were measured. V, Ni and Cr concentrations exceeded recommended safety values in all horizons of the soil profiles, while Cu had a variable distribution. Zn concentrations slightly exceeded recommended concentration limits. Concentrations were mapped in each physiographic unit using the inverse distance weighted (IDW) function of Arc-GIS 10.1 software. Pollution levels were closely associated with industry and urban areas
Past and future impacts of urbanisation on land surface temperature in Greater Cairo over a 45 year period
Rapid and unplanned urbanisation can lead to altered local climate by increasing land surface temperature (LST), particularly in summer months. This study investigates the Urban Heat Island (UHI) in Greater Cairo, Egypt, using remote sensing techniques to estimate LST of summer months over 45 years (1986, 2000, 2017, and predicted year 2030). The research objectives and steps were, 1- mapped land use/ land cover (LULC), 2- conducted spatiotemporal analysis of LST, with a comparison of change in LST across different land cover types, 3- predicted future LST for 2030, and 4- examined this temporal change for a hot-spot area (ring road) and a cool-spot area (the River Nile). The results showed that urban areas have increased over the last 30 years by 179.9 km2 (13 %), while agriculture areas decreased by 148 km2 (12 %) and water bodies decreased by 6 km2 (0.5 %). The mean LST over Greater Cairo increased over time, from 31.3 °C (1986) to 36.0 °C (2017) and is predicted to reach 37.9 °C in 2030. While a notable rise of mean LST in the Cairo ring road buffer zone (88 km2), where it was 31.1 °C (1986), and 37 °C (2017) due to the triple increase of urban areas on account of agriculture areas, and the LST it may reach 38.9 °C by 2030. The mean LST increased slightly more in urban hot-spot areas than in cooler cultivated areas. UHI may induce a modification in the local climate that can negatively affect agricultural land, and human thermal comfort and unfortunately lead to a less sustainable environment
Multi-Indicator and Geospatial Based Approaches for Assessing Variation of Land Quality in Arid Agroecosystems
Novel spatial models for appraising arable land resources using data processing techniques can increase insight into agroecosystem services. Hence, the principal component analysis (PCA), hierarchal cluster analysis (HCA), analytical hierarchy process (AHP), fuzzy logic, and geographic information system (GIS) were integrated to zone and map agricultural land quality in an arid desert area (Matrouh Governorate, Egypt). Satellite imageries, field surveys, and soil analyses were employed to define eighteen indicators for terrain, soil, and vegetation qualities, which were then reduced through PCA to a minimum data set (MDS). The original and MDS were weighted by AHP through experts’ opinions. Within GIS, the raster layers were generated, standardized using fuzzy membership functions (linear and non-linear), and assembled using arithmetic mean and weighted sum algorithms to produce eight land quality index maps. The soil properties (pH, salinity, organic matter, and sand), slope, surface roughness, and vegetation could adequately express the land quality. Accordingly, the HCA could classify the area into eight spatial zones with significant heterogeneity. Selecting salt-tolerant crops, applying leaching fraction, adopting sulfur and organic applications, performing land leveling, and using micro-irrigation are the most recommended practices. Highly significant (p < 0.01) positive correlations occurred among all the developed indices. Nevertheless, the coefficient of variation (CV) and sensitivity index (SI) confirmed the better performance of the index developed from the non-linearly scored MDS and weighted sum model. It could achieve the highest discrimination in land qualities (CV > 35%) and was the most sensitive (SI = 3.88) to potential changes. The MDS within this index could sufficiently represent TDS (R2 = 0.88 and Kappa statistics = 0.62), reducing time, effort, and cost for estimating the land performance. The proposed approach would provide guidelines for sustainable land-use planning in the studied area and similar regions
Development of a Spatial Model for Soil Quality Assessment under Arid and Semi-Arid Conditions
Food security has become a global concern for humanity with rapid population growth, requiring a sustainable assessment of natural resources. Soil is one of the most important sources that can help to bridge the food demand gap to achieve food security if well assessed and managed. The aim of this study was to determine the soil quality index (SQI) for El Fayoum depression in the Western Egyptian Desert using spatial modeling for soil physical, chemical, and biological properties based on the MEDALUS methodology. For this purpose, a spatial model was developed to evaluate the soil quality of the El Fayoum depression in the Western Egyptian Desert. The integration between Digital Elevation Model (DEM) and Sentinel-2 satellite image was used to produce landforms and digital soil mapping for the study area. Results showed that the study area located under six classes of soil quality, e.g., very high-quality class represents an area of 387.12 km(2) (22.7%), high-quality class occupies 441.72 km(2) (25.87%), the moderate-quality class represents 208.57 km(2) (12.21%), slightly moderate-quality class represents 231.10 km(2) (13.5%), as well as, a low-quality class covering an area of 233 km(2) (13.60%), and very low-quality class occupies about 206 km(2) (12%). The Agricultural Land Evaluation System for arid and semi-arid regions (ALESarid) was used to estimate land capability. Land capability classes were non-agriculture class (C6), poor (C4), fair (C3), and good (C2) with an area 231.87 km(2) (13.50%), 291.94 km(2) (17%), 767.39 km(2) (44.94%), and 416.07 km(2) (24.4%), respectively. Land capability along with the normalized difference vegetation index (NDVI) used for validation of the proposed model of soil quality. The spatially-explicit soil quality index (SQI) shows a strong significant positive correlation with the land capability and a positive correlation with NDVI at R-2 0.86 (p < 0.001) and 0.18 (p < 0.05), respectively. In arid regions, the strategy outlined here can easily be re-applied in similar environments, allowing decision-makers and regional governments to use the quantitative results achieved to ensure sustainable development
Assessment of Soil Capability and Crop Suitability Using Integrated Multivariate and GIS Approaches toward Agricultural Sustainability
Land evaluation has an important role in agriculture. Developing countries such as Egypt face many challenges as far as food security is concerned due to the increasing rates of population growth and the limited agriculture resources. The present study used multivariate analysis (PCA and cluster analysis) to assess soil capability in drylands, Meanwhile the Almagra model of Micro LEIS was used to evaluate land suitability for cultivated crops in the investigated area under the current (CS) and optimal scenario (OS) of soil management with the aim of determining the most appropriate land use based on physiographic units. A total of 15 soil profiles were selected to characterize the physiographic units of the investigated area. The results reveal that the high capability cluster (C1) occupied 31.83% of the total study area, while the moderately high capability (C2), moderate capability (C3), and low capability (C4) clusters accounted for 37.88%, 28.27%, and 2.02%, respectively. The limitation factors in the studied area were the high contents of CaCO3, the shallow soil depth, and the high salinity and high percentage of exchangeable sodium (% ESP) in certain areas. The application of OS enhanced the moderate suitability (S3) and unsuitable clusters (S5) to the suitable (S2) and marginally suitable (S4) categories, respectively, while the high suitability cluster (S1) had increased land area, which significantly affected the suitability of maize crop. The use of multivariate analysis for mapping and modeling soil suitability and capability can potentially help decision-makers to improve agricultural management practices and demonstrates the importance of appropriate management to achieving agricultural sustainability under intensive land use in drylands
Predicting Dynamics of Soil Salinity and Sodicity Using Remote Sensing Techniques: A Landscape-Scale Assessment in the Northeastern Egypt
Traditional mapping of salt affected soils (SAS) is very costly and cannot precisely depict the space–time dynamics of soil salts over landscapes. Therefore, we tested the capacity of Landsat 8 Operational Land Imager (OLI) data to retrieve soil salinity and sodicity during the wet and dry seasons in an arid landscape. Seventy geo-referenced soil samples (0–30 cm) were collected during March (wet period) and September to be analyzed for pH, electrical conductivity (EC), and exchangeable sodium percentage (ESP). Using 70% of soil and band reflectance data, stepwise linear regression models were constructed to estimate soil pH, EC, and ESP. The models were validated using the remaining 30% in terms of the determination coefficient (R2) and residual prediction deviation (RPD). Results revealed the weak variability of soil pH, while EC and ESP had large variabilities. The three indicators (pH, EC, and ESP) increased from the wet to dry period. During the two seasons, the OLI bands had weak associations with soil pH, while the near-infrared (NIR) band could effectively discriminate soil salinity and sodicity levels. The EC and ESP predictive models in the wet period were developed with the NIR band, achieving adequate outcomes (an R2 of 0.65 and 0.61 and an RPD of 1.44 and 1.43, respectively). In the dry period, the best-fitted models were constructed with deep blue and NIR bands, yielding an R2 of 0.59 and 0.60 and an RPD of 1.49 and 1.50, respectively. The SAS covered 50% of the study area during the wet period, of which 14 and 36% were saline and saline-sodic soils, respectively. The extent increased up to 59% during the dry period, including saline soils (12%) and saline-sodic soils (47%). Our findings would facilitate precise, rapid, and cost-effective monitoring of soil salinity and sodicity over large areas
Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones
One of the most significant challenges that global decision-makers are concerned about is soil contamination. It is also related to food security and soil fertility. The quality of the soil and crops in Egypt are being severely impacted by the increased heavy metal content of the soils in the middle Nile Delta. In Egypt’s middle Nile Delta, fifty random soil samples were chosen. Inverse distance weighting (IDW) was used to create the spatial pattern maps for four heavy metals: Cd, Mn, Pb, and Zn. The soil contamination levels in the research area were assessed using principal component analysis (PCA), contamination factors (CF), the geoaccumulation index (I-Geo), and the improved Nemerow pollution index (In). The findings demonstrated that using PCA, the soil heavy metal concentrations were divided into two clusters. Moreover, the majority of the study region (44.47%) was assessed to be heavily to extremely polluted by heavy metals. In conclusion, integrating the contamination indices CF, I-Geo, and In with the GIS technique and multivariate model, analysis establishes a practical and helpful strategy for assessing the hazard of heavy metal contamination. The findings could serve as a basis for decision-makers to create effective heavy metal mitigation efforts
A Novel Regional-Scale Assessment of Soil Metal Pollution in Arid Agroecosystems
This work is a novel trial to integrate geostatistics with fuzzy logic under the geographic information system (GIS) environment to model soil pollution. Soil samples from seventy-one soil profiles in the northern Nile Delta, Egypt, and were analyzed for total concentrations of Cd, Co, Cu, Pb, Ni, and Zn. Metal distribution maps were generated using ordinary kriging methods. They were normalized by linear and non-linear fuzzy membership functions (FMFs) and overlain by fuzzy operators (And, OR, Sum, Product, and Gamma). The final maps were validated using the area under the curve (AUC) of the receiver operating characteristic (ROC). The best-fitted semivariogram models were Gaussian for Cd, Pb, and Ni, circular for Co and Zn, and exponential for Cu. The ROC and AUC analysis revealed that the non-linear FMFs were more effective than the linear functions for modeling soil pollution. Overall, the highest AUC value (0.866; very good accuracy) resulted from applying the fuzzy Sum overly to the non-linearly normalized layers, implying the superiority of this model for decision-making in the studied area. Accordingly, 92% of the investigated soils were severely polluted. Our study would increase insight into soil metal pollution on a regional scale, especially in arid regions
Integration of Geostatistical and Sentinal-2AMultispectral Satellite Image Analysis for Predicting Soil Fertility Condition in Drylands
For modelling and predicting soil indicators to be fully operational and facilitate decision-making at any spatial level, there is a requirement for precise spatially referenced soil information to be available as input data. This paper focuses on showing the capacity of Sentinal-2A(S2A) multispectral imaging to predict soil properties and provide geostatistical analysis (ordinary kriging) for mapping dry land soil fertility conditions (SOCs). Conditioned Latin hypercube sampling was used to select the representative sampling sites within the study area. To achieve the objectives of this work, 48 surface soil samples were collected from the western part of Matrouh Governorate, Egypt, and pH, soil organic matter (SOM), available nitrogen (N), phosphorus (P), and potassium (K) levels were analyzed. Multilinear regression (MLR) was used to model the relationship between image reflectance and laboratory analysis (of pH, SOM, N, P, and K in the soil), followed by mapping the predicted outputs using ordinary kriging. Model fitting was achieved by removing variables according to the confidence level (95%).Around 30% of the samples were randomly selected to verify the validity of the results. The randomly selected samples helped express the variety of the soil characteristics from the investigated area. The predicted values of pH, SOM, N, P, and K performed well, with R2 values of 0.6, 0.7, 0.55, 0.6, and 0.92 achieved for pH, SOM, N, P, and K, respectively. The results from the ArcGIS model builder indicated a descending fertility order within the study area of: 70% low fertility, 22% moderate fertility, 3% very low fertility, and 5% reference terms. This work evidence that which can be predicted from S2A images and provides a reference for soil fertility monitoring in drylands. Additionally, this model can be easily applied to environmental conditions similar to those of the studied area
Integration of Geostatistical and Sentinal-2AMultispectral Satellite Image Analysis for Predicting Soil Fertility Condition in Drylands
For modelling and predicting soil indicators to be fully operational and facilitate decision-making at any spatial level, there is a requirement for precise spatially referenced soil information to be available as input data. This paper focuses on showing the capacity of Sentinal-2A(S2A) multispectral imaging to predict soil properties and provide geostatistical analysis (ordinary kriging) for mapping dry land soil fertility conditions (SOCs). Conditioned Latin hypercube sampling was used to select the representative sampling sites within the study area. To achieve the objectives of this work, 48 surface soil samples were collected from the western part of Matrouh Governorate, Egypt, and pH, soil organic matter (SOM), available nitrogen (N), phosphorus (P), and potassium (K) levels were analyzed. Multilinear regression (MLR) was used to model the relationship between image reflectance and laboratory analysis (of pH, SOM, N, P, and K in the soil), followed by mapping the predicted outputs using ordinary kriging. Model fitting was achieved by removing variables according to the confidence level (95%).Around 30% of the samples were randomly selected to verify the validity of the results. The randomly selected samples helped express the variety of the soil characteristics from the investigated area. The predicted values of pH, SOM, N, P, and K performed well, with R2 values of 0.6, 0.7, 0.55, 0.6, and 0.92 achieved for pH, SOM, N, P, and K, respectively. The results from the ArcGIS model builder indicated a descending fertility order within the study area of: 70% low fertility, 22% moderate fertility, 3% very low fertility, and 5% reference terms. This work evidence that which can be predicted from S2A images and provides a reference for soil fertility monitoring in drylands. Additionally, this model can be easily applied to environmental conditions similar to those of the studied area