4 research outputs found

    Targeted outdoor residual spraying, autodissemination devices and their combination against Aedes mosquitoes: field implementation in a Malaysian urban setting

    Get PDF
    Currently, dengue control relies largely on reactive vector control programmes. Proactive vector-control using a rational, well-balanced integrated vector management approach may prove more successful for dengue control. As part of the development of a cluster randomized controlled epidemiological trial, a study was conducted in Johor Bahru, Malaysia. The study included one control site (three buildings) and three intervention sites which were treated as follows: targeted outdoor residual spraying only (TORS site, two buildings); deployment of autodissemination devices only (ADD site, four buildings); and the previous two treatments combined (TORS + ADD site, three buildings). The primary entomological measurement was per cent of positive ovitraps—ovitrap index (OI). The effect of each intervention on OI was analyzed by a modified ordinary least squares regression model. Relative to the control site, the TORS and ADD sites showed a reduction in the Aedes OI (−6.5%, P = 0.04 and −8.3%, P = 0.10, respectively). Analysis by species showed that, relative to control, the Ae. aegypti OI was lower in ADD (−8.9%, P = 0.03) and in TORS (−10.4%, P = 0.02). No such effect was evident in the TORS + ADD site. The present study provides insights into the methods to be used for the main trial. The combination of multiple insecticides with different modes of action in one package is innovative, although we could not demonstrate the additive effect of TORS + ADD. Further work is required to strengthen our understanding of how these interventions impact dengue vector populations and dengue transmission

    Wing length results summarised in a box plot.

    No full text
    <p>Wing lengths for each adult are the average of the left and right wing measurements. Minimum and maximum wing lengths are shown by vertical lines, the upper and lower quartiles are shown by the bottom and top of box respectively, the median is represented by the horizontal line inside the box. Females that were fed on WT larvae (Control) were significantly smaller than females that were fed on RIDL larvae reared off-tetracycline (OFF-TET), highlighted by asterisk. No other significant differences were observed.</p

    Box plot summary of development time (days) of different life stages.

    No full text
    <p>Minimum and maximum development time are shown by vertical lines, the upper and lower quartiles are shown by the bottom and top of box respectively, the median is represented by horizontal line inside box; where the median value is the same as the upper and lower quartile the top of the gray or the bottom of the white box represents the median. Individuals for which sex could not be determined due to death prior to adult emergence were excluded from this analysis, these unclassified individuals represented at most 43% of each type and averaged 26.6% (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0058805#pone.0058805.s001" target="_blank">Table S1</a> for complete dataset. There was a significant difference in L4 larval development time between <i>Tx. amboinensis</i> and <i>Tx. splendens</i>.</p
    corecore