6 research outputs found

    Kaiso (ZBTB33) subcellular partitioning functionally links LC3A/B, the tumor microenvironment, and breast cancer survival

    Get PDF
    The use of digital pathology for the histomorphologic profiling of pathological specimens is expanding the precision and specificity of quantitative tissue analysis at an unprecedented scale; thus, enabling the discovery of new and functionally relevant histological features of both predictive and prognostic significance. In this study, we apply quantitative automated image processing and computational methods to profile the subcellular distribution of the multi-functional transcriptional regulator, Kaiso (ZBTB33), in the tumors of a large racially diverse breast cancer cohort from a designated health disparities region in the United States. Multiplex multivariate analysis of the association of Kaiso’s subcellular distribution with other breast cancer biomarkers reveals novel functional and predictive linkages between Kaiso and the autophagy-related proteins, LC3A/B, that are associated with features of the tumor immune microenvironment, survival, and race. These findings identify effective modalities of Kaiso biomarker assessment and uncover unanticipated insights into Kaiso’s role in breast cancer progression.Fil: Singhal, Sandeep K.. North Dakota State University; Estados UnidosFil: Byun, Jung S.. National Institutes of Health; Estados UnidosFil: Park, Samson. National Institutes of Health; Estados UnidosFil: Yan, Tingfen. National Institutes of Health; Estados UnidosFil: Yancey, Ryan. Columbia University; Estados UnidosFil: Caban, Ambar. Columbia University; Estados UnidosFil: Hernandez, Sara Gil. National Institutes of Health; Estados UnidosFil: Hewitt, Stephen M.. U.S. Department of Health & Human Services. National Institute of Health. National Cancer Institute; Estados UnidosFil: Boisvert, Heike. Ultivue, Inc; Reino UnidoFil: Hennek, Stephanie. Ultivue Inc.; Reino UnidoFil: Bobrow, Mark. Ultivue Inc.; Reino UnidoFil: Ahmed, Md Shakir Uddin. Tuskegee University; Estados UnidosFil: White, Jason. Tuskegee University; Estados UnidosFil: Yates, Clayton. Tuskegee University; Estados UnidosFil: Aukerman, Andrew. Columbia University; Estados UnidosFil: Vanguri, Rami. Columbia University; Estados UnidosFil: Bareja, Rohan. Columbia University; Estados UnidosFil: Lenci, Romina. Columbia University; Estados UnidosFil: Farré, Paula Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: de Siervi, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Nápoles, Anna María. National Institutes of Health; Estados UnidosFil: Vohra, Nasreen. East Carolina University; Estados UnidosFil: Gardner, Kevin. Columbia University; Estados Unido

    Formulation of the Polymeric Double Networks (DNs) for Biomedical Applications with Physicochemical Properties to Resemble a Biological Tissue

    No full text
    Single-network hydrogels can have an internal porous structure and biocompatibility, but have lower mechanical properties. Combining these properties with another biocompatible and mechanically strong network can help in mimicking the extracellular matrix of native tissues to make them suitable for tissue scaffolds with desired performance. In the current objective, we combine the properties of poly (ethylene glycol) dimethacrylate (PEGDMA) macromer and polysaccharides as the two components in double networks (DN) for synergistic effects of both components resulting in the interpenetrating polymeric network for making it functional for replacement of injured tissues. The hydrogels were characterized by physical properties like swelling ratio, mechanical properties like tensile and compressive modulus, and rheological behavior. The chemical composition was studied using Fourier transform infrared spectroscopy (FTIR), and the thermal behavior using differential scanning calorimetry (DSC) experiments. Biodegradability and mechanical strength both are gained using double networks (DN), thus making it resemble more like living tissues. DN hydrogels were tested for cell compatibility for possible application in tissue engineering. Furthermore, these properties may allow their application as tissue-engineered scaffolds

    A Novel CD206 Targeting Peptide Inhibits Bleomycin-Induced Pulmonary Fibrosis in Mice

    No full text
    Activated M2-polarized macrophages are drivers of pulmonary fibrosis in several clinical scenarios, including Idiopathic Pulmonary Fibrosis (IPF). In this study, we investigated the effects of targeting the CD206 receptor in M2-like macrophages with a novel synthetic analogue of a naturally occurring Host Defense Peptide (HDP), RP-832c, to decrease profibrotic cytokines. RP-832c selectively binds to CD206 on M2-polarized bone marrow-derived macrophages (BMDM) in vitro, resulting in a time-dependent decrease in CD206 expression and a transient increase in M1-macrophage marker TNF-α. To elucidate the antifibrotic effects of RP-832c, we used a murine model of bleomycin (BLM)-induced early-stage pulmonary fibrosis. RP-832c significantly reduced fibrosis in a dose-dependent manner, and decreased CD206, TGF-β1, and α-SMA expression in mouse lungs. Similarly, in an established model of lung fibrosis, RP-832c significantly decreased lung fibrosis and significantly decreased inflammatory cytokines TNF-α, IL-6, IL-10, IFN-γ, CXCL1/2, and fibrosis markers TGF-β1 and MMP-13. In comparison with the FDA-approved drugs Nintedanib and Pirfenidone, RP-832c exhibited a similar reduction in fibrosis compared to Pirfenidone, and to a greater extent than Nintedanib, with no apparent toxicities observed. In summary, our findings showed that inhibiting the profibrotic alternatively activated M2-like macrophages using a novel peptide, RP-832c, could reduce BLM-induced pulmonary fibrosis in mice, warranting the therapeutic potential of this peptide for patients with pulmonary fibrosis

    Immune Profile of Exosomes in African American Breast Cancer Patients Is Mediated by Kaiso/THBS1/CD47 Signaling

    No full text
    African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients
    corecore