594 research outputs found

    Microarrays and breast cancer clinical studies: forgetting what we have not yet learnt

    Get PDF
    This review takes a sceptical view of the impact of breast cancer studies that have used microarrays to identify predictors of clinical outcome. In addition to discussing general pitfalls of microarray experiments, we also critically review the key breast cancer studies to highlight methodological problems in cohort selection, statistical analysis, validation of results and reporting of raw data. We conclude that the optimum use of microarrays in clinical studies requires further optimisation and standardisation of methodology and reporting, together with improvements in clinical study design

    Binding of chlorinated environmentally active chemicals to soil surfaces: Chromatographic measurements and quantum chemicalSimulations

    Get PDF
    Adsorption studies of hexachlorobenzene (HCB) on the different well-characterized soil samples were performed. A new soil organic matter (SOM) model has been developed. Interaction of this model with HCB has been studied using different quantum-mechanical methods and molecular dynamics simulations. It has been explored that the alkylated aromatic, phenol, and lignin monomer compounds dominate the adsorption process. Moreover it was found that the most vital physical properties controlling this interaction are polarizability, molar volume, and charges of C atoms of the soil constituents

    On Spectrum Sharing Between Energy Harvesting Cognitive Radio Users and Primary Users

    Full text link
    This paper investigates the maximum secondary throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources and primary radio frequency (RF) transmissions. We propose a power allocation policy at the PU and analyze its effect on the throughput of both the PU and SU. Furthermore, we study the impact of the bursty arrivals at the PU on the energy harvested by the SU from RF transmissions. Moreover, we investigate the impact of the rate of energy harvesting from natural resources on the SU throughput. We assume fading channels and compute exact closed-form expressions for the energy harvested by the SU under fading. Results reveal that the proposed power allocation policy along with the implemented RF energy harvesting at the SU enhance the throughput of both primary and secondary links

    Power-Optimal Feedback-Based Random Spectrum Access for an Energy Harvesting Cognitive User

    Full text link
    In this paper, we study and analyze cognitive radio networks in which secondary users (SUs) are equipped with Energy Harvesting (EH) capability. We design a random spectrum sensing and access protocol for the SU that exploits the primary link's feedback and requires less average sensing time. Unlike previous works proposed earlier in literature, we do not assume perfect feedback. Instead, we take into account the more practical possibilities of overhearing unreliable feedback signals and accommodate spectrum sensing errors. Moreover, we assume an interference-based channel model where the receivers are equipped with multi-packet reception (MPR) capability. Furthermore, we perform power allocation at the SU with the objective of maximizing the secondary throughput under constraints that maintain certain quality-of-service (QoS) measures for the primary user (PU)

    Optimal Spectrum Access for a Rechargeable Cognitive Radio User Based on Energy Buffer State

    Full text link
    This paper investigates the maximum throughput for a rechargeable secondary user (SU) sharing the spectrum with a primary user (PU) plugged to a reliable power supply. The SU maintains a finite energy queue and harvests energy from natural resources, e.g., solar, wind and acoustic noise. We propose a probabilistic access strategy by the SU based on the number of packets at its energy queue. We investigate the effect of the energy arrival rate, the amount of energy per energy packet, and the capacity of the energy queue on the SU throughput under fading channels. Results reveal that the proposed access strategy can enhance the performance of the SU.Comment: arXiv admin note: text overlap with arXiv:1407.726

    Maximum likelihood estimation of the generalised Gompertz distribution under progressively first-failure censored sampling

    Get PDF
    In this paper, the maximum likelihood estimators of the unknown parameters, as well as some lifetime parameters survival and hazard rate functions, of a three-parameter generalised Gompertz lifetime model based on progressively first-failure censored sampling are obtained. Approximate confidence intervals for the unknown parameters and the reliability characteristics are constructed based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators. Although the proposed estimators cannot be expressed in explicit forms, these can be easily obtained through the use of appropriate numerical techniques. Finally, a real data set has been analysed for illustrative purposes

    Optimization algorithms for transportation problems with stochastic demand

    Get PDF
    The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to minimize the total costs, Where the approved model was able to minimize the total costs by 25%. A future study investigating optimization heuristic with stochastics demand would be very interesting

    Clustering large-scale data based on modified affinity propagation algorithm

    Get PDF
    Traditional clustering algorithms are no longer suitable for use in data mining applications that make use of large-scale data. There have been many large-scale data clustering algorithms proposed in recent years, but most of them do not achieve clustering with high quality. Despite that Affinity Propagation (AP) is effective and accurate in normal data clustering, but it is not effective for large-scale data. This paper proposes two methods for large-scale data clustering that depend on a modified version of AP algorithm. The proposed methods are set to ensure both low time complexity and good accuracy of the clustering method. Firstly, a data set is divided into several subsets using one of two methods random fragmentation or K-means. Secondly, subsets are clustered into K clusters using K-Affinity Propagation (KAP) algorithm to select local cluster exemplars in each subset. Thirdly, the inverse weighted clustering
    • …
    corecore