26 research outputs found

    Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas

    Get PDF
    Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system’s glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs

    Filamin repeat segments required for photosensory signalling in Dictyostelium discoideum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filamin is an actin binding protein which is ubiquitous in eukaryotes and its basic structure is well conserved – an N-terminal actin binding domain followed by a series of repeated segments which vary in number in different organisms. <it>D. discoideum </it>is a well established model organism for the study of signalling pathways and the actin cytoskeleton and as such makes an excellent organism in which to study filamin. Ddfilamin plays a putative role as a scaffolding protein in a photosensory signalling pathway and this role is thought to be mediated by the unusual repeat segments in the rod domain.</p> <p>Results</p> <p>To study the role of filamin in phototaxis, a filamin null mutant, HG1264, was transformed with constructs each of which expressed wild type filamin or a mutant filamin with a deletion of one of the repeat segments. Transformants expressing the full length filamin to wild type levels completely rescued the phototaxis defect in HG1264, however if filamin was expressed at lower than wild type levels the phototaxis defect was not restored. The transformants lacking any one of the repeat segments 2–6 retained defective phototaxis and thermotaxis phenotypes, whereas transformants expressing filaminΔ1 exhibited a range of partial complementation of the phototaxis phenotype which was related to expression levels. Immunofluorescence microscopy showed that filamin lacking any of the repeat segments still localised to the same actin rich areas as wild type filamin. Ddfilamin interacts with RasD and IP experiments demonstrated that this interaction did not rely upon any single repeat segment or the actin binding domain.</p> <p>Conclusion</p> <p>This paper demonstrates that wild type levels of filamin expression are essential for the formation of functional photosensory signalling complexes and that each of the repeat segments 2–6 are essential for filamins role in phototaxis. By contrast, repeat segment 1 is not essential provided the mutated filamin lacking repeat segment 1 is expressed at a high enough level. The defects in photo/thermosensory signal transduction caused by the absence of the repeats are due neither to mislocalisation of filamin nor to the loss of RasD recruitment to the previously described photosensory signalling complex.</p

    Integrin-linked kinase expression in myeloid cells promotes colon tumorigenesis

    Get PDF
    Colorectal cancer (CRC) is one of the most common forms of cancer worldwide and treatment options for advanced CRC, which has a low 5-year survival rate, remain limited. Integrin-linked kinase (ILK), a multifunctional, scaffolding, pseudo-kinase regulating many integrin-mediated cellular processes, is highly expressed in many cancers. However, the role of ILK in cancer progression is yet to be fully understood. We have previously uncovered a pro-inflammatory role for myeloid-specific ILK in dextran sodium sulfate (DSS)-induced colitis. To establish a correlation between chronic intestinal inflammation and colorectal cancer (CRC), we investigated the role of myeloid-ILK in mouse models of CRC. When myeloid-ILK deficient mice along with the WT control mice were subjected to colitis-associated and APCmin/+-driven CRC, tumour burden was reduced by myeloid-ILK deficiency in both models. The tumour-promoting phenotype of macrophages, M2 polarization, in vitro was impaired by the ILK deficiency and the number of M2-specific marker CD206-expressing tumour-associated macrophages (TAMs) in vivo were significantly diminished in myeloid-ILK deficient mice. Myeloid-ILK deficient mice showed enhanced tumour infiltration of CD8+ T cells and reduced tumour infiltration of FOXP3+ T cells in colitis-associated and APCmin/+-driven CRC, respectively, with an overall elevated CD8+/FOXP3+ ratio suggesting an anti-tumour immune phenotypes. In patient CRC tissue microarrays we observed elevated ILK+ myeloid (ILK+ CD11b+) cells in tumour sections compared to adjacent normal tissues, suggesting a conserved role for myeloid-ILK in CRC development in both human and animal models. This study identifies myeloid-specific ILK expression as novel driver of CRC, which could be targeted as a potential therapeutic option for advanced disease

    Notes on Contributors: Emerging Economies and the Changing Dynamics of Development Cooperation

    No full text
    This is the notes on contributors for IDS Bulletin 49.3, 'Emerging Economies and the Changing Dynamics of Development Cooperation’.Japan International Cooperation Agency Research Institute (JICA

    CARP2 deficiency does not alter induction of NFkappaB by TNFα

    Get PDF
    TNFα can activate pathways leading to caspase-8-mediated apoptosis, as well as inflammatory pathways signaled by transcription factors. The adaptor protein RIP1 is a critical component for TNF receptor 1 (TNFR1)-mediated activation of NF-κB, because deletion of the gene encoding RIP1 in mice prevents induction of NF-κB by TNFα and causes severe runting with early postnatal lethality [1]. Recently, it has been proposed that caspase 8 and 10 associated RING protein-2 (CARP2, also named RIFIFYLIN/SAKURA) binds to the TNFR1 complex, leading to ubiquitylation and proteasome-mediated degradation of RIP1, thereby limiting the level of NF-κB activated by TNFα [2]. However, our experiments in mice lacking the Rififylin/Carp2 gene question this conclusion, because levels of RIP1 and induction of NF-κB by TNFα are normal in the absence of CARP2

    IAP Antagonists Target cIAP1 to Induce TNFα-Dependent Apoptosis

    Get PDF
    SummaryXIAP prevents apoptosis by binding to and inhibiting caspases, and this inhibition can be relieved by IAP antagonists, such as Smac/DIABLO. IAP antagonist compounds (IACs) have therefore been designed to inhibit XIAP to kill tumor cells. Because XIAP inhibits postmitochondrial caspases, caspase 8 inhibitors should not block killing by IACs. Instead, we show that apoptosis caused by an IAC is blocked by the caspase 8 inhibitor crmA and that IAP antagonists activate NF-κB signaling via inhibtion of cIAP1. In sensitive tumor lines, IAP antagonist induced NF-κB-stimulated production of TNFα that killed cells in an autocrine fashion. Inhibition of NF-κB reduced TNFα production, and blocking NF-κB activation or TNFα allowed tumor cells to survive IAC-induced apoptosis. Cells treated with an IAC, or those in which cIAP1 was deleted, became sensitive to apoptosis induced by exogenous TNFα, suggesting novel uses of these compounds in treating cancer
    corecore