44 research outputs found

    Site selection for nuclear power plant in Mersing Johor

    Get PDF
    Nuclear power is considered as energy source option for future power generation in the National New Energy Policy 2010. The first nuclear power plant (NPP) construction is expected to start at 2017, and officially operated in 2025. This paper aims to propose possible candidate site areas for NPP in Mersing District, Johor. The evaluation uses the Atomic Energy Licensing Board (AELB) guideline documents as main reference, supported by regulation documents from International Atomic Energy Agency (IAEA). 4 safety parameters are used in the assessment – geological characteristic, air dispersion (meteorological) analysis, population data and safety characteristics. This study ranked 4 proposed areas possible candidate site area for NPP in Mersing district

    Determination of surface radiation dose-rate in the environment of Kelantan State, Malaysia

    Get PDF
    Measurements of environmental surface radiation dose rate in Kelantan state, Malaysia was carried out using a portable hand held radiation survey meter and Global Positioning System (GPS). The surface radiation dose rates ranged from 44 to 500 nGy h-1. The measurements were done based on geology and soil types of the area. The mean radiation dose rate was found to be 209 ± 8 nGy h-1. Few areas of relatively enhanced activity were located in Pasir Mas, Tanah Merah and Jeli districts which have external gamma dose rates between 300 to 500 nGy h_1. An Isodose map of the state was produced using ArcGIS10 software version 10.1. To evaluate the radiological hazard due to terrestrial gamma dose, the annual effective dose equivalent (AEDE), the mean population weighted dose rate and cancer risk factor were calculated and found to be relative excess lifetime cancer risks were 1.280 mSv y-1, 18 mSv and 1.04×10-3 respectively

    Effect of surface roughness and temperature on the performance of low-temperature vacuum drying with induced nucleation boiling method in dewatering stingless bees honey

    Get PDF
    The Low-Temperature Vacuum Drying with Induced Nucleation Boiling (LTVD-NB) was developed to dewater honey. However, the effects of surface roughness (SR) and temperature of the LTVD-NB for honey are still unknown. Thus, the objective of this study is to investigate the effect of SR and temperature on dewatering rate and heat transfer performance. The honey sample was heated at 40-50 °C using heater pipes with SR 0.80-11.33 µm at a 5 kPa. It was found that the dewatering rate obtained at the highest SR and temperature was five times higher than the lowest SR and temperature. By increasing the SR from 0.80 to 11.33 µm, the Heat Transfer Coefficient (HTC) increased by 143% as more nucleation sites were present on the surface. Besides, when temperature increased heat flux, bubble frequency and HTC also increased. In conclusion, the dewatering rate increases when SR and temperature increase, which is correlated with nucleation sites and bubble frequency

    Mathematical Modelling of Stingless Bee Honey Dewatering using Low-Temperature Vacuum Drying with Induced Nucleation Bubbling

    Get PDF
    ow-temperature vacuum drying with induced nucleation boiling (LTVD-NB) was developed to dewater heat-sensitive materials such as stingless bee honey (SBH). However, its performance can be further optimised to achieve an efficient LTVD-NB operation. The objective of this paper is to investigate the most fitting drying model for dewatering SBH and to develop a suitable mathematical drying model that can be used to predict and optimise dewatering SBH using LTVD-NB. Established experimental data was used to develop the mathematical model. The data result showed that the logarithmic model had the best fit for drying SBH using LTVD-NB as compared to other models based on the highest value of R 2 and the lowest Root mean square, RMSE and reduced chi-square, χ 2 values which are 0.999988, 7.87E-05, and 1.41E-08, respectively. The model was further regressed to obtain an optimised mathematical model to better predict an LTVD-NB operation to dewater SBH. In conclusion, an optimised drying model to describe the dewatering process of SBH using the LTVD-NB method was able to be developed based on the multiple regression analysis of the obtained experimental data. Therefore, the drying model can predict the efficiency of this process just by giving the temperature and surface roughness values as input information

    Multi-angle swirling fluidized bed drying of stingless bees pot-pollen

    Get PDF
    Pot-pollen is another stingless bee product, a mixture of pollen, honey, and bee enzyme stored in cerumen pots. Pot-pollen is protein rich and have therapeutic properties. However, they contain high moisture rendering them susceptible to microbial and fungi growth which will lead to spoilage without proper storage. Conventional methods to remove moisture includes sun drying, oven drying, and food dehydrators. However, they can be unhygienic, reduce pot-pollen quality, and lengthy drying time. Swirling fluidized bed dryer (SFBD) is a promising alternative as they have rapid drying time without damaging the nutrients. The addition of multi-angle swirling distributor (MASD) has the potential to improve drying performance without additional energy input. The current study aim to investigate the drying performance of swirling fluidized bed dryer with multi-angle distributor. Raw pot-pollen is dried in a lab scale SFBD at 3.0 m/s using single angle and multi-angle swirling distributors, 6767, 6730, and 6745. The results shown that the multi-angle swirling distributors 6730 and 6745 improved the drying performance of SFBD, by 17.1 % and 6.5 %, respectively. The best drying performance is shown by the 6730 distributor. Thus, multi-angle SFBD is able to rapidly dry the heat-sensitive stingless bee pot-pollen and represented significant improvement from single angle SFBD

    H-Balm: Harumanis-based relieving product / Mohamed Syazwan Osman ... [et al.]

    Get PDF
    Harumanis mangoes are one of the best mangoes in the world produced in the smallest state in the Northern tip of Malaysia - Perlis. Whilst most of Harumanis mangoes are exported to Japan, Singapore and the rest of the world each year, major customers of this authentic mangoes still the fellow Malaysians. Unlike every other mangoes, Harumanis mangoes have a distinct taste. They have a slightly creamy and milky taste and a very strong and distinct aroma. If one to obtain the authentic or Grade A Harumanis, most likely have to go to the government farm (Jabatan Pertanian Perlis) at Sungai Batu Pahat. Recently, there is strategic collaboration between Jabatan Pertanian Perlis and UiTM Cawangan Pulau Pinang to elevate Harumanis mangoes prestige to the next level. One of the main strategy is to diversify Harumanis brand products to downstream products derived from other parts of the Harumanis plants to assist local farmers to increase their economic potentials. Herein, we propose an innovation called H-BALM that derived from a Harumanis leaves as the main ingredients. This product aim to relieve any pain after tiring day or any physical activities. One of the major compound in this plant, called mangiferin, is believed to possesses medicinal and health benefits which deemed an attractive options to customers. The product will be launched by DYTM Raja Muda Perlis and will be commercialized this year. Distinct and unique aroma of the tea will please customers. This project will envisage to open more opportunities for the local farmers to enhance their income whilst promoting the brand name of Harumanis to higher level

    Natural radioactivity in major rivers of Kelantan state, Malaysia

    Get PDF
    Assessment of natural radionuclides (238U, 232Th, and 40K) and terrestrial gamma radiation dose rates (TGRD) in major rivers of Kelantan states, Malaysia were conducted. Measurements were carried out using a portable [NaI(TI)] micro roentgen (μR) survey meter and inductively coupled plasma mass spectrometer (ICP-MS) for in situ TGRD and the activity concentrations of 238U, 232Th, and 40K in water samples, respectively. The mean TGRD was found to be 312.98 nGy h-1 and from water samples analyzed, the mean activity concentrations of 238U, 232Th, and 40K was found to be 13.31 mBq L-1, 4.39 mBq L-1 and 1118.72 mBq L-1 which were about 3 times and slightly higher than the world average values of 5 mBq L-1 and 3 mBq L-1 respectively

    DOSE RATE PREDICTIVE MODEL OF TERRESTRIAL GAMMA RADIATION BASED ON SUPERFICIAL-WEATHERED SOIL AND ROCKS : CASE STUDY IN SARAWAK, MALAYSIA

    Get PDF
    Estimating terrestrial gamma radiation (TGR) levels is crucial for assessing the annual effective dose received by the public due to natural radiation exposure. Cumulative doses from various sources can become significant, warranting a spatial understanding of TGR distribution. Few countries have comprehensively mapped TGR on a national scale, often facing challenges due to remote or inaccessible regions. This study explores the feasibility of estimating TGR dose rates using a linear regression model based on surface-weathered soils and rocks in Sarawak, Borneo, Malaysia. Geological studies reported that a rich diversity of rock types shaped by complex tectonic history can be found in Sarawak, predominantly sedimentary rocks covering 93% of the region, while igneous and metamorphic rocks constitute the remaining 7%. In this study, a total of 1044 TGR dose rate measurements were collected. The measurement ranges from 7 to 320 nGy h-1, with a mean of 100 nGy h-1.. Non-parametric statistical analyses of variance have validated the notable dissimilarities among six categories of superficial-weathered soil and distinguished the two distinct groupings of sedimentary and igneous rocks. The regression analysis produced a model for predicting TGR dose rates (nGy h–1 ) = 0.992Dsoil – 0.816Drock + 109. The model showed a sufficient linear correlation, with spatial maps generated from in-situ measurements and the regression model displaying similar regional dose rate contours. Semivariogram analysis supported the model's reliability for predicting TGR dose rates in areas with similar geological backgrounds. In conclusion, this study has successfully developed a predictive model for TGR dose rates in Sarawak, based on superficialweathered soil and rock data. While the model is specific to the Sundaland-Borneo tectonic block, it provides a valuable tool for spatial inference of TGR dose rates in unsampled locations with similar geological characteristics, aiding in radiation exposure assessment and environmental monitoring
    corecore