17 research outputs found

    Spin-isospin selectivity in three-nucleon forces

    Get PDF
    Precision data are presented for the break-up reaction, (2)H((p) over right arrow, pp)n, within the framework of nuclear-force studies. The experiment was carried out at KVI using a polarized-proton beam of 190 MeV impinging on a liquid-deuterium target and by exploiting the detector, BINA. Some of the vector-analyzing powers are presented and compared with state-of-the-art Faddeev calculations including three-nucleon forces effect. Significant discrepancies between the data and theoretical predictions were observed for kinematical configurations which correspond to the (2)H((p) over right arrow,(2)He)n channel. These results are compared to the (2)H((p) over right arrow, d)p reaction to test the isospin sensitivity of the present three-nucleon force models. The current modeling of two and three-nucleon forces is not sufficient to describe consistently polarization data for both isospin states. (C) 2010 Elsevier B.V. All rights reserved

    Simulation of flow of short fiber suspensions through a planar contraction

    No full text
    In this study, the flow of a fiber filled viscoelastic matrix through planar contractions is investigated. It was found that by adding fiber to the matrix vortex, the intensity increases. Fiber orientation along "x" and "y" axes was studied too. It was found that fiber orientation could be used for determining the flow regime through the contraction geometry. The rigidity condition of fibers, which needs the trace of the orientation tensor to be unity everywhere in the domain, is correct except near walls and the reentrant corner, which is slightly less than one. In these regions, the stress magnitude is higher, which results in more numerical errors, and which further leads to some error in predicting the orientation tensor. The first normal stress difference distribution along different axes was also studied in this article. It was found that increasing the volume concentration of fibers results in first normal stress difference intensification

    Experimental investigation and theoretical prediction of extrudate swell using conformational rheological models

    No full text
    In this study the extrudate swell of polymer solutions is estimated using the microstructure of polymer molecules. When a flexible polymer chain goes through a narrow die shear stress exerting on the chain will cause the polymer chain to be stretched along the flow direction. After emerging from die all external stresses vanish immediately and the chains tend to recover their previous state due to elastic recovery. This phenomenon will results in a gradual increase in extrudate diameter and this is used as the key idea for estimating swell ratio. A Giesekus based conformational model was used in order to predict polymer chains microstructure everywhere in the domain. The resulting PDE set including, continuity, momentum, and conformational theological model were solved using a finite volume method with the OpenFOAM software. Numerical results were compared with experimental data which were obtained for aqueous solutions of Carboxymethylcellulose. It was found that model predictions are in good agreement with experimental data. The results were also compared to results which were obtained by the Tanner relation which underestimates experimental data

    Flow of a PTT fluid through planar contractions : vortex inhibition using rounded corners

    No full text
    Contraction flow is one of important geometries in fluid flow both in Newtonian and non-Newtonian fluids. In this study, flow of a viscoelastic fluid through a planar 4:1 contraction with rounded corners was investigated. Six different rounding ratios (RR=0, 0.125, 0.25, 0.375, 0.438, 0.475, 0.488) was examined using the linear PTT constitutive equation at creeping flow and isothermal condition. Then the resulting PDE set including continuity, momentum, and PTT constitutive equations were implemented to the OpenFOAM software. The results clearly show vortex deterioration with increasing rounding diameter, so that when rounding corner exceeds a critical value, the vortex disappears completely. This phenomenon was also observed at different upstream widths. Furthermore, by increasing rounding diameter, the diminishing vortex approaches to the re-entrant corner

    Sustained release of CIP from TiO₂‐PVDF/starch nanocomposite mats with potential application in wound dressing

    No full text
    Abstract Electrospinning is an economical and alluring method to fabricate wound dressing mats from a variety of natural and synthetic materials. In this study, polyvinylidene fluoride (PVDF) and starch composite mats containing ciprofloxacin (CIP) loaded on titanium dioxide nanoparticles (TiO₂) were prepared. Fourier Transform Infrared spectra of CIP, synthesized TiO₂ NPs, TiO₂/CIP, and PVDF/starch composite mats are analyzed. Scanning electron microscopy images revealed that the fiber diameter of PVDF nanofibers thickens by increasing starch, which varies between 180 nm and 550 nm. Strain at break of PVDF, starch, PVDF/starch (2:1 w:w; P2S1), PVDF/starch (1:1 w:w; P1S1), PVDF/starch (1:2 w:w; P1S2), and nanofibers were 103 ± 11, 3 ± 0.6, 27 ± 4, 52 ± 5.2, 7.7 ± 1%, respectively. Based on strain at break and young modulus, P2S1 was selected as a suitable candidate for wound dressing to which load TiO₂/CIP as a bioactive agent. The release rate of CIP showed that about 40% of the drug is released in the first 2 days. Furthermore, the antibacterial activity of dressings was investigated using Escherichia coli and Staphylococcus aureus microorganisms and zones of clearance were obvious around the specimen on the agar plate
    corecore