6 research outputs found

    A worldwide survey on incidence, management and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation: The POTTER-AF study.

    Get PDF
    AIMS Oesophageal fistula represents a rare but dreadful complication of atrial fibrillation catheter ablation. Data on its incidence, management and outcome are sparse. METHODS AND RESULTS This international multicenter registry investigates the characteristics of oesophageal fistulae after treatment of atrial fibrillation by catheter ablation. A total of 553,729 catheter ablation procedures (radiofrequency: 62.9%, cryoballoon: 36.2%, other modalities: 0.9%) were performed at 214 centers in 35 countries. In 78 centers 138 patients (0.025%, radiofrequency: 0.038%, cryoballoon: 0.0015% (p<0.0001)) were diagnosed with an oesophageal fistula. Periprocedural data were available for 118 patients (85.5%). Following catheter ablation, the median time to symptoms and the median time to diagnosis were 18 (7.75, 25; range: 0-60) days and 21 (15, 29.5; range: 2-63) days, respectively. The median time from symptom onset to oesophageal fistula diagnosis was 3 (1, 9; range: 0-42) days. The most common initial symptom was fever (59.3%). The diagnosis was established by chest computed tomography in 80.2% of patients. Oesophageal surgery was performed in 47.4% and direct endoscopic treatment in 19.8%, and conservative treatment in 32.8% of patients. The overall mortality was 65.8%. Mortality following surgical (51.9%) or endoscopic treatment (56.5%) was significantly lower as compared to conservative management (89.5%) (odds ratio 7.463 (2.414, 23.072) p<0.001). CONCLUSIONS Oesophageal fistula after catheter ablation of atrial fibrillation is rare and occurs mostly with the use of radiofrequency energy rather than cryoenergy. Mortality without surgical or endoscopic intervention is exceedingly high

    Safety and Efficacy of Cryoballoon Based Pulmonary Vein Isolation in Patients with Atrial Fibrillation and a History of Cancer

    No full text
    Introduction: A growing body of evidence suggests a strong association between atrial fibrillation (AF) and cancer. A relevant number of patients with a present or former malignant disease with highly symptomatic drug-refractory AF are in need of interventional therapy. Data on the safety and efficacy of catheter ablation in these patients are sparse. The present study aims to analyze the safety and efficacy of cryoballoon-based pulmonary vein isolation (CB-PVI) for symptomatic AF in patients with past or present cancer disease. Methods and Results: Consecutive patients undergoing CB-PVI for symptomatic AF at University Hospital Lübeck, Germany between July 2015 and January 2019 were included in this study. Propensity-score based matching was performed to identify comparable patients with and without cancer disease and further analyze clinical characteristics, periprocedural complications and arrhythmia-free survival. A total of 70 patients with a history of cancer undergoing CB-PVI were matched to 70 patients without a history of cancer. The frequency of complications was similar between patients with and without a history of cancer (p = 0.11), with four phrenic nerve palsies occurring in patients with a history of cancer (5.6% of the cohort) vs. one phrenic nerve palsy in patients without cancer (p = 0.36). Arrhythmia free survival after 12 months did not differ significantly in patients with and without a history of cancer (67.1 ± 5.8% vs. 77.8% ± 5.1%, p = 0.16). Conclusion: This study indicates that CB-PVI for symptomatic AF is equally safe and effective in patients with and without a history of cancer and cancer treatment

    Evaluation of predictive scores for late and very late recurrence after cryoballoon-based ablation of atrial fibrillation

    No full text
    Purpose!#!Studies on predictive scores for very late recurrence (VLR) (recurrence later than 12 months) after second-generation cryoballoon-based pulmonary vein isolation (CB2-PVI) are sparse. We aimed to evaluate the frequency of late recurrence (LR) (later than 3 months) and VLR, and to validate predictive scores for LR and VLR after initial CB2-PVI.!##!Methods!#!A total of 288 patients undergoing initial CB2-PVI (66 ± 11 years, 46% paroxysmal) were retrospectively enrolled in the LR cohort. In the VLR cohort, 83 patients with recurrence within 3-12 months or with &amp;lt; 12-month follow-up were excluded. The predictive scores of arrhythmia recurrence were assessed, including the APPLE, DR-FLASH, PLAAF, BASE-AF!##!Results!#!During a mean follow-up of 15.3 ± 7.1 months, 188 of 288 (65.2%) patients remained in sinus rhythm without any recurrences. Thirty-two of 205 (15.6%) patients experienced VLR after a mean of 16.6 ± 5.6 months. Comparing the predictive values of these specific scores, the MB-LATER score showed a reliable trend toward greater risk of both LR and VLR (area under the curve in LR; 0.632, 0.637, 0.632, 0.637, 0.604, 0.725, and 0.691 (p = ns), VLR; 0.612, 0.636, 0.644, 0.586, 0.541, 0.633, and 0.680 (p = 0.038, vs. BASE-AF!##!Conclusion!#!The MB-LATER score provided more reliable predictive value for both LR and VLR. Patients with higher MB-LATER scores may benefit from more intensive long-term follow-up

    Safety and Feasibility of Catheter Ablation Procedures in Patients with Bleeding Disorders

    Full text link
    AIMS/OBJECTIVES Patients with bleeding disorders are a rare and complex population in catheter ablation (CA) procedures. The most common types of bleeding disorders are von Willebrand disease (VWD) and hemophilia A (HA). Patients with VWD or HA tend to have a higher risk of bleeding complications compared to other patients. There is a lack of data concerning peri- and postinterventional coagulation treatment. We sought to assess the optimal management of patients with VWD and HA referred for catheter ablation procedures. METHODS AND RESULTS In this study, we analyzed patients with VWD or HA undergoing CA procedures at two centers in Germany and Switzerland between 2016 and 2021. Clotting factors were administered in conjunction with hemostaseological recommendations. CA was performed as per the institutional standard. During the procedure, unfractionated heparin (UFH) was given intravenously with respect to the activated clotting time (ACT). Primary endpoints included the feasibility of the procedure, bleeding complications, and thromboembolic events during the procedure. Secondary endpoints included bleeding complications and thromboembolic events up to one year after catheter ablation. A total of seven patients (three VWD Type I, one VWD Type IIa, three HA) underwent 10 catheter ablation procedures (pulmonary vein isolation (PVI): two × radiofrequency (RF), one × laser balloon (LB), one × cryoballoon (CB); PVI + cavotricuspid isthmus (CTI): one × RF; PVI + left atrial appendage isolation (LAAI): one × RF; Premature ventricular contraction (PVC): three × RF; Atrioventricular nodal reentrant tachycardia (AVNRT): one × RF). VWD patients received 2000-3000 IE Wilate i.v. 30 to 45 min prior to ablation. Patients with HA received 2000-3000 IE factor VIII before the procedure. All patients undergoing PVI received UFH (cumulative dose 9000-18,000 IE) with a target ACT of &gt;300 s. All patients after PVI were started on oral anticoagulation (OAC) 12 h after ablation. Two patients received aspirin (acetylsalicylic acid; ASA) for 4 weeks after the ablation of left-sided PVCs. No anticoagulation was prescribed after slow pathway modulation in a case with AVNRT. No bleeding complications or thromboembolic events were reported. During a follow-up of one year, one case of gastrointestinal bleeding occurred following OAC withdrawal after LAA occlusion. CONCLUSIONS After the substitution of clotting factors, catheter ablation in patients with VWD and HA seems to be safe and feasible

    Safety and Feasibility of Catheter Ablation Procedures in Patients with Bleeding Disorders

    No full text
    Aims/Objectives: Patients with bleeding disorders are a rare and complex population in catheter ablation (CA) procedures. The most common types of bleeding disorders are von Willebrand disease (VWD) and hemophilia A (HA). Patients with VWD or HA tend to have a higher risk of bleeding complications compared to other patients. There is a lack of data concerning peri- and postinterventional coagulation treatment. We sought to assess the optimal management of patients with VWD and HA referred for catheter ablation procedures. Methods and Results: In this study, we analyzed patients with VWD or HA undergoing CA procedures at two centers in Germany and Switzerland between 2016 and 2021. Clotting factors were administered in conjunction with hemostaseological recommendations. CA was performed as per the institutional standard. During the procedure, unfractionated heparin (UFH) was given intravenously with respect to the activated clotting time (ACT). Primary endpoints included the feasibility of the procedure, bleeding complications, and thromboembolic events during the procedure. Secondary endpoints included bleeding complications and thromboembolic events up to one year after catheter ablation. A total of seven patients (three VWD Type I, one VWD Type IIa, three HA) underwent 10 catheter ablation procedures (pulmonary vein isolation (PVI): two × radiofrequency (RF), one × laser balloon (LB), one × cryoballoon (CB); PVI + cavotricuspid isthmus (CTI): one × RF; PVI + left atrial appendage isolation (LAAI): one × RF; Premature ventricular contraction (PVC): three × RF; Atrioventricular nodal reentrant tachycardia (AVNRT): one × RF). VWD patients received 2000–3000 IE Wilate i.v. 30 to 45 min prior to ablation. Patients with HA received 2000–3000 IE factor VIII before the procedure. All patients undergoing PVI received UFH (cumulative dose 9000–18,000 IE) with a target ACT of >300 s. All patients after PVI were started on oral anticoagulation (OAC) 12 h after ablation. Two patients received aspirin (acetylsalicylic acid; ASA) for 4 weeks after the ablation of left-sided PVCs. No anticoagulation was prescribed after slow pathway modulation in a case with AVNRT. No bleeding complications or thromboembolic events were reported. During a follow-up of one year, one case of gastrointestinal bleeding occurred following OAC withdrawal after LAA occlusion. Conclusions: After the substitution of clotting factors, catheter ablation in patients with VWD and HA seems to be safe and feasible

    A worldwide survey on incidence, management and prognosis of oesophageal fistula formation following atrial fibrillation catheter ablation:The POTTER-AF study

    Get PDF
    AIMS: Oesophageal fistula represents a rare but dreadful complication of atrial fibrillation catheter ablation. Data on its incidence, management and outcome are sparse.METHODS AND RESULTS: This international multicenter registry investigates the characteristics of oesophageal fistulae after treatment of atrial fibrillation by catheter ablation. A total of 553,729 catheter ablation procedures (radiofrequency: 62.9%, cryoballoon: 36.2%, other modalities: 0.9%) were performed at 214 centers in 35 countries. In 78 centers 138 patients (0.025%, radiofrequency: 0.038%, cryoballoon: 0.0015% (p&lt;0.0001)) were diagnosed with an oesophageal fistula. Periprocedural data were available for 118 patients (85.5%). Following catheter ablation, the median time to symptoms and the median time to diagnosis were 18 (7.75, 25; range: 0-60) days and 21 (15, 29.5; range: 2-63) days, respectively. The median time from symptom onset to oesophageal fistula diagnosis was 3 (1, 9; range: 0-42) days. The most common initial symptom was fever (59.3%). The diagnosis was established by chest computed tomography in 80.2% of patients. Oesophageal surgery was performed in 47.4% and direct endoscopic treatment in 19.8%, and conservative treatment in 32.8% of patients. The overall mortality was 65.8%. Mortality following surgical (51.9%) or endoscopic treatment (56.5%) was significantly lower as compared to conservative management (89.5%) (odds ratio 7.463 (2.414, 23.072) p&lt;0.001).CONCLUSIONS: Oesophageal fistula after catheter ablation of atrial fibrillation is rare and occurs mostly with the use of radiofrequency energy rather than cryoenergy. Mortality without surgical or endoscopic intervention is exceedingly high.</p
    corecore