87 research outputs found

    Sorption mechanism of copper ions on synthetic and natural dentine hydroxyapatites

    Get PDF
    Removal of copper ions from aqueous solutions on synthetic and dentine waste hydroxyapatites (HAP) was investigated in batch sorption experiments. Kinetics of sorption followed a pseudo-first order model. Steady-state data show agreement with the Sips isotherm compared with Freundlich and Langmuir models. The higher surface area and carbonated nature of synthetic hydroxyapatite were not sufficient to reach higher sorption capacity than natural one. Ion-exchange and precipitation contributed on  removal of Copper despite level ionization of hydroxyapatites. Proton and metal exchanges with copper ions contributed to process of sorption with prevalence of proton-exchange at low copper ion concentrations. High temperatures promoted the removal efficiency of Cu(II) onto the natural and synthesised hydroxyapatites. The thermodynamic parameters showed that sorption process was spontaneous, endothermic and associated entropy at the solid/solution interface increased at high temperatures

    Enhanced removal of acetaminophen from synthetic wastewater using multi-walled carbon nanotubes (MWCNTs) chemically modified with NaOH, HNO3/H2SO4, ozone, and/or chitosan

    Get PDF
    peer-reviewedThis study investigates the technical feasibility of MWCNTs for acetaminophen (Ace) removal from synthetic wastewater in batch mode. To improve their removal performance, the surface of the MWCNTs was chemically modified with NaOH, HNO3/H2SO4, ozone and/or chitosan. The effects of pertinent parameters such as reaction time, dose, pH, and agitation speed on the Ace removal were evaluated. Their removal performance on Ace was compared to those of previous studies. The adsorption mechanisms of Ace removal by the MWCNTs are also presented. It is evident from this study that after chemical modification on its surface, the treated nano-adsorbent significantly enhanced Ace removal from wastewater. Among all types of those adsorbents, the ozone-treated MWCNT stands out for the highest Ace removal (95%) under the same initial Ace concentration of 10 mg/L. Their adsorption capacities, applicable to the Freundlich isotherm model, are listed as: ozone-treated MWCNT (250 mg/g) > chitosan-coated MWCNT (205 mg/g) > acid-treated MWCNT (160 mg/g) > NaOH-treated MWCNT (130 mg/g) > as-received MWCNT (90 mg/g). Although the ozone-treated MWCNT has the most outstanding performance in Ace removal, its treated effluent still could not meet the required effluent limit of less than 0.2 mg/L set by China’s legislation. This suggests that further treatment using biological processes needs to be carried out to complement Ace removal from the wastewater samples

    Growth kinetics of nuclei formed from different binders and powders in vertical cylindrical mixing devices

    Get PDF
    peer-reviewedGranulation is the process of forming large aggregates from fine particles using a high shear mixer. This method is used in several industries from pharmaceuticals to chemical and fertilizer production. This research will study the effect of four process variables: speed of mixer rotation in the range 100–200 rpm, powder bed mass (25–40 g), mass of the initial nucleus (0.6–2 g), and binder viscosity (water, carboxymethyl cellulose (CMC) solutions with concentrations in the range 0.5–20 g/L) on single nuclei growth kinetics in low mixing devices. The powders under study were: lactose, tea, sugar, starch, and limestone. The results show the initial size of nuclei, the initial mass of the powder bed and binder viscosity and speed of rotation all influence the rate of nuclei growth. Analysis of the stokes deformation number of the nuclei show that growth rate of the nuclei decreases as the deformation number increases whilst the percentage gain in mass of the nuclei increases with increasing deformation number. The binder viscosity was shown to have the biggest influence of the growth rate of the nuclei. Results show that difference in powder density also has an effect on the growth kinetics of nuclei. The initial position of nuclei was also shown to influence the nuclei growth rate; the closer the starting position of the nuclei to the wall of the vessel the slower the growth rate

    Enhanced photocatalytic degradation of acetaminophen from wastewater using WO3/TiO2/SiO2 composite under UV–VIS irradiation

    Get PDF
    peer-reviewedThe full text of this article will not be available in ULIR until the embargo expires on the 26/8/2019This study investigates the photocatalytic degradation of acetaminophen (Ace) from synthetic wastewater by individual TiO2, TiO2/SiO2 and/or WO3/TiO2/SiO2 composite under UV-VIS illumination. To characterize changes in their morphology and crystal structures before and after treatment, Χ-ray diffraction (ΧRD), Fourier transform infrared spectroscopy (FTIR) , DRS UV-VIS absorption spectra, Brunaer-Emmer-Teller (BET) and scanning electron microscopy (SEM) techniques were used. The effects of varying loading ratios of the WO3 on the TiO2/SiO2 composite for Ace degradation were studied. Operating parameters such as initial concentration, reaction time, dose of photocatalyst and pH were tested. Degradation by-products were also presented. It is found that the photodegradation performance of the WO3/TiO2/SiO2 composite as a photocatalyst in this study could be enhanced by optimizing the loading ratio of the WO3. About 3% (w/w) of WO3/TiO2/SiO2 was found to improve the degradation of Ace from 33% to 95% at the same initial concentration of 5 mg/L. The resulting oxidation by-products included hydroquinone and 1,4-benzoquinone. Under the same conditions, the result of photocatalytic degradation by the 3% (w/w) of WO3/TiO2/SiO2 composite was significantly higher (95%) than that by the individual TiO2/SiO2 (42%) and/or by the TiO2 alone (33%). Under optimized conditions (1.5 g/L; 3% (w/w) of WO3/TiO2/SiO2 composite; pH 9; 4 h of reaction time), 95% of Ace removal with an initial concentration of 5 mg/L could be attained. However, the treated effluents still could not meet the discharge standard of less than 0.2 mg/L set by China’s and US legislation. This indicates that further subsequent treatment like biological processes is still necessary for completing the removal of target pollutant from the wastewater samples

    Mechanism of alizarin red S and methylene blue biosorption onto olive stone: isotherm study in single and binary systems

    Get PDF
    The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites
    • …
    corecore