29,085 research outputs found

    Working memory learning method and astrocytes number in different subfields of rat's Hippocampus

    Get PDF
    The aim of this study was evaluation of the astrocytes number in different subfields of rat's Hippocampus after spatial learning with usage of Morris Water Maze technique and working memory method. In this study, between 2005-2006 years in Pasteur institute of Iran-Tehran and histological department of Gorgan University with usage of Morris Water Maze and working memory technique, we used 14 male albino wistar rats. Seventh rats were in control group and 7 rats in working memory group. After histological preparation, the slides were stained with PTAH staining for showing the Astrocytes. Present results showed significant difference in astrocytes number in CA1, CA2 and CA3 areas of hippocampus between control and reference memory group. The number of astrocytes is increased in working memory group. Then we divided the hippocampus to three parts: Anterior, middle and posterior and with compare of different area (CA1, CA2 and CA3) of hippocampus, we found that the differences between Anterior-middle and Middle-Posterior of CA1 and CA2 area of hippocampus were significant, whereas the difference between Anterior-Posterior parts was not significant in CA1 and CA2 areas. In CA3 area, the difference between Anterior-Middle and Anterior-Posterior parts was significant, whereas the difference between middle and posterior parts was not significant. We concluded that the number of astrocytes increased due to spatial learning and working memory technique. © 2008 Science Publications

    Transverse Momentum Distribution and Elliptic Flow of Charged Hadrons in UU+UU collisions at sNN=193\sqrt{s_{NN}}=193 GeV using HYDJET++

    Full text link
    Recent experimental observations of the charged hadron properties in U+UU+U collisions at 193193 GeV contradict many of the theoretical models of particle production including two-component Monte Carlo Glauber model. The experimental results show a small correlation between the charged hadron properties and the initial geometrical configurations (e.g. body-body, tip-tip etc.) of U+UU+U collisions. In this article, we have modified the Monte Carlo HYDJET++ model to study the charged hadron production in U+UU+U collisions at 193193 GeV center-of-mass energy in tip-tip and body-body initial configurations. We have modified the hard as well as soft production processes to make this model suitable for U+UU+U collisions. We have calculated the pseudorapidity distribution, transverse momentum distribution and elliptic flow distribution of charged hadrons with different control parameters in various geometrical configurations possible for U+UU+U collision. We find that HYDJET++ model supports a small correlation between the various properties of charged hadrons and the initial geometrical configurations of U+UU+U collision. Further, the results obtained in modified HYDJET++ model regarding dnch/dηdn_{ch}/d\eta and elliptic flow (v2v_{2}) suitably matches with the experimental data of U+UU+U collisions in minimum bias configuration.Comment: 29 pages, 25 figures. Accepted for Publication in EPJ

    Structural Properties of Transmuted Weibull Distribution

    Get PDF
    The transmuted Weibull distribution, and a related special case, is introduced. Estimates of parameters are obtained by using a new method of moments

    Energy Consumption of Lactating Mothers: Current Situation and Problems

    Full text link
    Recommendations on the adequacy of nutrient intake indicate that lactating mothers have higher nutritional needs than do pregnant mothers. High nutrient intake is necessary to help mothers recover after childbirth, produce milk, and maintain the quantity and quality of breast milk. It also prevents maternal malnutrition. Research has shown, however, that the dietary energy consumption of mothers during lactation was significantly lower than that during pregnancy. The current study explored the factors associated with decreased nutritional intake during maternal lactation. The study was conducted in March–April 2013, and the subjects were mothers with infants aged >6 months. Results revealed that the factors causing low dietary energy consumption among breastfeeding mothers were poor nutritional knowledge and attitude toward high energy intake requirements during lactation, lack of time to cook and eat because of infant care, reduced consumption of milk and supplements, dietary restrictions and prohibitions, and suboptimal advice from midwives/health personnel. Beginning from the antenatal care visit, health personnel should conduct effective counseling on the importance of nutrient intake during lactation. Advice should be provided not only to mothers, but also to their families to enable them to thoroughly support the mothers as they breastfeed their infants

    Ab-initio study of the bandgap engineering of Al(1-x)Ga(x)N for optoelectronic applications

    Full text link
    A theoretical study of Al(1-x)Ga(x)N, based on full-potential linearized augmented plane wave method, is used to investigate the variations in the bandgap, optical properties and non-linear behavior of the compound with the variation of Ga concentration. It is found that the bandgap decreases with the increase of Ga in Al(1-x)Ga(x)N. A maximum value of 5.5 eV is determined for the bandgap of pure AlN which reaches to minimum value of 3.0 eV when Al is completely replaced by Ga. The static index of refraction and dielectric constant decreases with the increase in bandgap of the material, assigning a high index of refraction to pure GaN when compared to pure AlN. The refractive index drops below 1 for photon energies larger than 14 eV results group velocity of the incident radiation higher than the vacuum velocity of light. This astonishing result shows that at higher energies the optical properties of the material shifts from linear to non-linear. Furthermore, frequency dependent reflectivity and absorption coefficients show that peak value of the absorption coefficient and reflectivity shifts towards lower energy in the UV spectrum with the increase in Ga concentration. This comprehensive theoretical study of the optoelectronic properties of the alloys is presented for the first time which predicts that the material can be effectively used in the optical devices working in the visible and UV spectrum.Comment: 18 pages, 7 figure

    Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

    Get PDF
    Lognormal distribution is widely used in scientific field, such as agricultural, entomological, biology etc. If a variable can be thought as the multiplicative product of some positive independent random variables, then it could be modelled as lognormal. In this study, maximum likelihood estimates and posterior estimates of the parameters of lognormal distribution are obtained and using these estimates we calculate the point estimates of mean and variance for making comparisons

    Ab initio studies of electronic structure of defects in PbTe

    Full text link
    Understanding the detailed electronic structure of deep defect states in narrow band-gap semiconductors has been a challenging problem. Recently, self-consistent ab initio calculations within density functional theory (DFT) using supercell models have been successful in tackling this problem. In this paper, we carry out such calculations in PbTe, a well-known narrow band-gap semiconductor, for a large class of defects: cationic and anionic substitutional impurities of different valence, and cationic and anionic vacancies. For the cationic defects, we study a series of compounds RPb2n-1Te2n, where R is vacancy or monovalent, divalent, or trivalent atom; for the anionic defects, we study compounds MPb2nTe2n-1, where M is vacancy, S, Se or I. We find that the density of states (DOS) near the top of the valence band and the bottom of the conduction band get significantly modified for most of these defects. This suggests that the transport properties of PbTe in the presence of impurities can not be interpreted by simple carrier doping concepts, confirming such ideas developed from qualitative and semi-quantitative arguments
    corecore