804 research outputs found

    Exotic Low Density Fermion States in the Two Measures Field Theory: Neutrino Dark Energy

    Full text link
    We study a new field theory effect in the cosmological context in the Two Measures Field Theory (TMT). TMT is an alternative gravity and matter field theory where the gravitational interaction of fermionic matter is reduced to that of General Relativity when the energy density of the fermion matter is much larger than the dark energy density. In this case also the 5-th force problem is solved automatically. In the opposite limit, where the magnitudes of fermionic energy density and scalar field dark energy density become comparable, nonrelativistic fermions can participate in the cosmological expansion in a very unusual manner. Some of the features of such states in a toy model of the late time universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos: neutrino mass increases as m ~ a^{3/2}; the neutrino gas equation-of-state approaches w=-1, i.e. neutrinos behave as a sort of dark energy; the total (scalar field + neutrino) equation-of-state also approaches w=-1; the total energy density of such universe is less than it would be in the universe filled with the scalar field alone. An analytic solution is presented. A domain structure of the dark energy seems to be possible. We speculate that decays of the CLEP state neutrinos may be both an origin of cosmic rays and responsible for a late super-acceleration of the universe. In this sense the CLEP states exhibit simultaneously new physics at very low densities and for very high particle masses.Comment: 47 pages, accepted for publication in Int.J.Mod.Phys.

    Theoretical correlation between possible evidences of neutrino chiral oscillations and polarization measurements

    Full text link
    Reporting about the formalism with the Dirac equation we describe the dynamics of chiral oscillations for a fermionic particle non-minimally coupling with an external magnetic field. For massive particles, the chirality and helicity quantum numbers represent different physical quantities of representative importance in the study of chiral interactions, in particular, in the context of neutrino physics. After solving the interacting Hamiltonian (Dirac) equation for the corresponding {\em fermionic} Dirac-{\em type} particle (neutrino) and quantifying chiral oscillations in the Dirac wave packet framework, we avail the possibility of determining realistic neutrino chirality conversion rates by means of (helicity) polarization measurements. We notice that it can become feasible for some particular magnetic field configurations with large values of {\boldmathBB} orthogonal to the direction of the propagating particle.Comment: 12 pages, 2 figure

    Extra Dirac Equations

    Get PDF
    This paper has rather a pedagogical meaning. Surprising symmetries in the (j,0)(0,j)(j,0)\oplus (0,j) Lorentz group representation space are analyzed. The aim is to draw reader's attention to the possibility of describing the particle world on the ground of the Dirac "doubles". Several tune points of the variational principle for this kind of equations are briefly discussed.Comment: REVTeX 3.0, 14p

    Gravitomagnetism in Metric Theories: Analysis of Earth Satellites Results, and its Coupling with Spin

    Full text link
    Employing the PPN formalism the gravitomagnetic field in different metric theories is considered in the analysis of the LAGEOS results. It will be shown that there are several models that predict exactly the same effect that general relativity comprises. In other words, these Earth satellites results can be taken as experimental evidence that the orbital angular momentum of a body does indeed generate space--time geometry, notwithstanding they do not endow general relativity with an outstanding status among metric theories. Additionally the coupling spin--gravitomagnetic field is analyzed with the introduction of the Rabi transitions that this field produces on a quantum system with spin 1/2. Afterwards, a continuous measurement of the energy of this system is introduced, and the consequences upon the corresponding probabilities of the involved gravitomagnetic field will be obtained. Finally, it will be proved that these proposals allows us, not only to confront against future experiments the usual assumption of the coupling spin--gravotimagnetism, but also to measure some PPN parameters and to obtain functional dependences among them.Comment: 10 page

    Lagrangian for the Majorana-Ahluwalia Construct

    Get PDF
    The equations describing self/anti-self charge conjugate states, recently proposed by Ahluwalia, are re-written to covariant form. The corresponding Lagrangian for the neutral particle theory is proposed. From a group-theoretical viewpoint the construct is an example of the Nigam-Foldy-Bargmann-Wightman-Wigner-type quantum field theory based on the doubled representations of the extended Lorentz group. Relations with the Sachs-Schwebel and Ziino-Barut concepts of relativistic quantum theory are discussed.Comment: 10pp., REVTeX 3.0 fil

    Spin half fermions with mass dimension one: theory, phenomenology, and dark matter

    Full text link
    We provide the first details on the unexpected theoretical discovery of a spin-one-half matter field with mass dimension one. It is based upon a complete set of dual-helicity eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity, it belongs to a non-standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. We briefly discuss its relevance to the cosmological `horizon problem'. Because the introduced fermionic field is endowed with mass dimension one, it can carry a quartic self-interaction. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate the new fermion as a prime dark matter candidate. Taking this suggestion seriously we study a supernova-like explosion of a galactic-mass dark matter cloud to set limits on the mass of the new particle and present a calculation on relic abundance to constrain the relevant cross-section. The analysis favours light mass (roughly 20 MeV) and relevant cross-section of about 2 pb. Similarities and differences with the WIMP and mirror matter proposals for dark matter are enumerated. In a critique of the theory we bare a hint on non-commutative aspects of spacetime, and energy-momentum space.Comment: 78 pages [Changes: referee-suggested improvements, additional important references, and better readability

    Self-interacting Elko dark matter with an axis of locality

    Full text link
    This communication is a natural and nontrivial continuation of the 2005 work of Ahluwalia and Grumiller on Elko. Here we report that Elko breaks Lorentz symmetry in a rather subtle and unexpected way by containing a `hidden' preferred direction. Along this preferred direction, a quantum field based on Elko enjoys locality. In the form reported here, Elko offers a mass dimension one fermionic dark matter with a quartic self-interaction and a preferred axis of locality. The locality result crucially depends on a judicious choice of phases.Comment: 14 pages (RevTex

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Phase Separation in a Simple Model with Dynamical Asymmetry

    Full text link
    We perform computer simulations of a Cahn-Hilliard model of phase separation which has dynamical asymmetry between the two coexisting phases. The dynamical asymmetry is incorporated by considering a mobility function which is order parameter dependent. Simulations of this model reveal morphological features similar to those observed in viscoelastic phase separation. In the early stages, the minority phase domains form a percolating structure which shrinks with time eventually leading to the formation of disconnected domains. The domains grow as L(t) ~ t^{1/3} in the very late stages. Although dynamical scaling is violated in the area shrinking regime, it is restored at late times. However, the form of the scaling function is found to depend on the extent of dynamical asymmetry.Comment: 16 pages in LaTeX format and 6 Postscript figure

    Action principle formulation for motion of extended bodies in General Relativity

    Get PDF
    We present an action principle formulation for the study of motion of an extended body in General Relativity in the limit of weak gravitational field. This gives the classical equations of motion for multipole moments of arbitrary order coupling to the gravitational field. In particular, a new force due to the octupole moment is obtained. The action also yields the gravitationally induced phase shifts in quantum interference experiments due to the coupling of all multipole moments.Comment: Revised version derives Octupole moment force. Some clarifications and a reference added. To appear in Phys. Rev.
    corecore