83 research outputs found

    Progress on Antiangiogenic Therapy for Patients with Malignant Glioma

    Get PDF
    Glioblastoma (GBM) is the most common primary brain tumor occurring in America. Despite recent advances in therapeutics, the prognosis for patients with newly diagnosed GBM remains dismal. As these tumors characteristically show evidence of angiogenesis (neovascularization) there has been great interest in developing anti-angiogenic therapeutic strategies for the treatment of patients with this disease and some anti-angiogenic agents have now been used for the treatment of patients with malignant glioma tumors. Although the results of these clinical trials are promising in that they indicate an initial therapeutic response, the anti-angiogenic therapies tested to date have not changed the overall survival of patients with malignant glioma tumors. This is due, in large part, to the development of resistance to these therapies. Ongoing research into key features of the neovasculature in malignant glioma tumors, as well as the general angiogenesis process, is suggesting additional molecules that may be targeted and an improved response when both the neovasculature and the tumor cells are targeted. Prevention of the development of resistance may require the development of anti-angiogenic strategies that induce apoptosis or cell death of the neovasculature, as well as an improved understanding of the potential roles of circulating endothelial progenitor cells and vascular co-option by tumor cells, in the development of resistance

    Primary adenoid cystic carcinoma of the breast: case report and review of the literature

    Get PDF
    Adenoid cystic carcinoma (ACC) of the breast is a rare neoplasm accounting for 0.1% of all breast carcinomas, and presenting most commonly as a painful breast mass. In contrast to the aggressive nature of ACC at other sites, ACC of the breast has a favorable prognosis, lymph node involvement or distant metastases seldom occur. Treatment is basically of simple mastectomy. Chemotherapy, radiation and hormonal treatment have been infrequently used and evaluated. We report a case of ACC of the breast managed with mastectomy and review the literature

    Integration of systemic therapy and stereotactic radiosurgery for brain metastases

    Get PDF
    Brain metastasis (BM) represents a common complication of cancer, and in the modern era requires multi-modal management approaches and multi-disciplinary care. Traditionally, due to the limited efficacy of cytotoxic chemotherapy, treatment strategies are focused on local treatments alone, such as whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and resection. However, the increased availability of molecular-based therapies with central nervous system (CNS) penetration now permits the individualized selection of tailored systemic therapies to be used alongside local treatments. Moreover, the introduction of immune checkpoint inhibitors (ICIs), with demonstrated CNS activity has further revolutionized the management of BM patients. The rapid introduction of these cancer therapeutics into clinical practice, however, has led to a significant dearth in the published literature about the optimal timing, sequencing, and combination of these systemic therapies along with SRS. This manuscript reviews the impact of tumor biology and molecular profiles on the management paradigm for BM patients and critically analyzes the current landscape of SRS, with a specific focus on integration with systemic therapy. We also discuss emerging treatment strategies combining SRS and ICIs, the impact of timing and the sequencing of these therapies around SRS, the effect of corticosteroids, and review post-treatment imaging findings, including pseudo-progression and radiation necrosis

    Systematic review and meta-analysis of lung cancer brain metastasis and primary tumor receptor expression discordance

    Get PDF
    Background: Treatment paradigms for metastatic non-small cell lung cancer are increasingly based on biomarker-driven therapies, with the most common alteration being mutation in the epidermal growth factor receptor (EGFR). Change in expression of such biomarkers could have a profound impact on the choice and efficacy of a selected targeted therapeutic, and hence the objective of this study was to analyze discordance in EGFR status in patients with lung cancer brain metastasis (LCBM). Methods: Using PRISMA guidelines, a systematic review was performed of series in the Medline database of biopsied or resected LCBM published before May, 2020. Key words included “lung cancer” and “brain metastasis” combined with “epidermal growth factor receptor/EGFR,” and “receptor conversion/discordance or concordance.” Weighted random effects models were used to calculate pooled estimates. Results: We identified 501 patients from 19 full-text articles for inclusion in this study. All patients underwent biopsy or resection of at least one intracranial lesion to compare to the primary tumor. On primary/LCBM comparison, the weighted pooled estimate for overall EGFR receptor discordance was 10% (95% CI 5–17%). The weighted effects model estimated a gain of an EGFR mutation in a brain metastases in patients with negative primary tumors was 7% (95% CI 4–12%). Alternatively, the weighted effects model estimate of loss of an EGFR mutation in patients with detected mutations in the primary tumor was also 7% (95% CI 4–10%). KRAS testing was also performed on both primary tumors and LCBM in a subset of 148 patients. The weighted effects estimate of KRAS-mutation discordance among LCBM compared to primary tumors was 13% (95% CI 5–27%). The weighted effects estimated of KRAS gain and loss in LCBM was 10% (95% CI 6–18%) and 8% (95% CI 4–15%), respectively. Meta-regression analysis did not find any association with any factors that could be associated with discordances. Conclusions: EGFR and KRAS mutation status discordance between primary tumor and LCBM occurs in approximately 10% and 13% of patients, respectively. Evaluation of LCBM receptor status is key to biomarker-driven targeted therapy for intracranial disease and awareness of subtype switching is critical for those patients treated with systemic therapy alone for intracranial disease

    Hospitalization rates from radiotherapy complications in the United States

    Get PDF
    Hospitalizations due to radiotherapy (RT) complications result in significant healthcare expenditures and adversely affect the quality of life of cancer patients. Using a nationally representative dataset, the objective of this study is to identify trends in the incidence of these hospitalizations, their causes, and the resulting financial burden. Data from the National Inpatient Sample was retrospectively analyzed from 2005 to 2016. RT complications were identified using ICD-9 and ICD-10 external cause-of-injury codes. The hospitalization rate was the primary endpoint, with cost and in-hospital death as secondary outcomes. 443,222,223 weighted hospitalizations occurred during the study period, of which 482,525 (0.11%) were attributed to RT. The 3 most common reasons for RT-related hospitalization were cystitis (4.8%, standard error [SE] = 0.09), gastroenteritis/colitis (3.7%, SE = 0.07), and esophagitis (3.5%, SE = 0.07). Aspiration pneumonitis (1.4-fold) and mucositis (1.3-fold) had the highest relative increases among these hospitalizations from 2005 to 2016, while esophagitis (0.58-fold) and disorders of the rectum and anus were the lowest (0.67-fold). The median length of stay of patient for hospitalization for RT complications was 4.1 (IQR, 2.2–7.5) days and the median charge per patient was 10,097(IQR,575518,891)andthetotalcostduringthestudyperiodwas10,097 (IQR, 5755–18,891) and the total cost during the study period was 4.9 billion. Hospitalization for RT-related complications is relatively rare, but those that are admitted incur a substantial cost. Use of advanced RT techniques should be employed whenever possible to mitigate the risk of severe toxicity and therefore reduce the need to admit patients

    Factors associated with unplanned readmissions and costs following resection of brain metastases in the United States

    Get PDF
    The purpose of this study was to critically analyze the risk of unplanned readmission following resection of brain metastasis and to identify key risk factors to allow for early intervention strategies in high-risk patients. We analyzed data from the Nationwide Readmissions Database (NRD) from 2010–2014, and included patients who underwent craniotomy for brain metastasis, identified using ICD-9-CM diagnosis (198.3) and procedure (01.59) codes. The primary outcome of the study was unplanned 30-day all-cause readmission rate. Secondary outcomes included reasons and costs of readmissions. Hierarchical logistic regression model was used to identify the factors associated with 30-day readmission following craniotomy for brain metastasis. During the study period, 44,846 index hospitalizations occurred for patients who underwent resection of brain metastasis. In this cohort, 17.8% (n = 7,965) had unplanned readmissions within the first 30 days after discharge from the index hospitalization. The readmission rate did not change significantly during the five-year study period (p-trend = 0.286). The median per-patient cost for 30-day unplanned readmission was 11,109andthisamountedtoatotalof11,109 and this amounted to a total of 26.4 million per year, which extrapolates to a national expenditure of $269.6 million. Increasing age, male sex, insurance status, Elixhauser comorbidity index, length of stay, teaching status of the hospital, neurological complications and infectious complications were associated with 30-day readmission following discharge after an index admission for craniotomy for brain metastasis. Unplanned readmission rates after resection of brain metastasis remain high and involve substantial healthcare expenditures. Developing tools and interventions to prevent avoidable readmissions could focus on the high-risk patients as a future strategy to decrease substantial healthcare expense

    Impact of KRAS mutation status on the efficacy of immunotherapy in lung cancer brain metastases

    Get PDF
    Immune checkpoint inhibitors (ICIs) have resulted in improved outcomes in non-small cell lung cancer (NSCLC) patients. However, data demonstrating the efficacy of ICIs in NSCLC brain metastases (NSCLCBM) is limited. We analyzed overall survival (OS) in patients with NSCLCBM treated with ICIs within 90 days of NSCLCBM diagnosis (ICI-90) and compared them to patients who never received ICIs (no-ICI). We reviewed 800 patients with LCBM who were diagnosed between 2010 and 2019 at a major tertiary care institution, 97% of whom received stereotactic radiosurgery (SRS) for local treatment of BM. OS from BM was compared between the ICI-90 and no-ICI groups using the Log-Rank test and Cox proportional-hazards model. Additionally, the impact of KRAS mutational status on the efficacy of ICI was investigated. After accounting for known prognostic factors, ICI-90 in addition to SRS led to significantly improved OS compared to no-ICI (12.5 months vs 9.1, p \u3c 0.001). In the 109 patients who had both a known PD-L1 expression and KRAS status, 80.4% of patients with KRAS mutation had PD-L1 expression vs 61.9% in wild-type KRAS patients (p = 0.04). In patients without a KRAS mutation, there was no difference in OS between the ICI-90 vs no-ICI cohort with a one-year survival of 60.2% vs 54.8% (p = 0.84). However, in patients with a KRAS mutation, ICI-90 led to a one-year survival of 60.4% vs 34.1% (p = 0.004). Patients with NSCLCBM who received ICI-90 had improved OS compared to no-ICI patients. Additionally, this benefit appears to be observed primarily in patients with KRAS mutations that may drive the overall benefit, which should be taken into account in the development of future trials

    SerpinB3 Drives Cancer Stem Cell Survival in Glioblastoma

    Get PDF
    Despite therapeutic interventions for glioblastoma (GBM), cancer stem cells (CSCs) drive recurrence. The precise mechanisms underlying CSC resistance, namely inhibition of cell death, are unclear. We built on previous observations that the high cell surface expression of junctional adhesion molecule-A drives CSC maintenance and identified downstream signaling networks, including the cysteine protease inhibitor SerpinB3. Using genetic depletion approaches, we found that SerpinB3 is necessary for CSC maintenance, survival, and tumor growth, as well as CSC pathway activation. Knockdown of SerpinB3 also increased apoptosis and susceptibility to radiation therapy. SerpinB3 was essential to buffer cathepsin L-mediated cell death, which was enhanced with radiation. Finally, we found that SerpinB3 knockdown increased the efficacy of radiation in pre-clinical models. Taken together, our findings identify a GBM CSC-specific survival mechanism involving a cysteine protease inhibitor, SerpinB3, and provide a potential target to improve the efficacy of GBM therapies against therapeutically resistant CSCs

    Medical therapy of gliomas

    No full text
    Medical therapies are an important part of adjunctive therapy for gliomas. In this chapter we will review the chemotherapeutic and targeted agents that have been evaluated in clinical trials in grade II-IV gliomas in the last decade. A number of randomized phase III trials were completed and reported. There has been a clear success in oligodendroglial tumors and low grade glioma. Although some progress has been made in glioblastoma, considerable work involving the multidisciplinary collaboration of basic science, translational and clinical investigators needs to be done to improve the outcome of patients with anaplastic astrocytoma and glioblastoma. In addition, tailoring treatment based on molecular cytogenetic characteristics is a major focus of research into precision based medicine for glioma

    Targeted therapy of brain metastases: latest evidence and clinical implications

    No full text
    Brain metastases (BM) occur in 20–40% of patients with cancer and 60–75% of patients with BM become symptomatic. Due to an aging population and advances in the treatment of primary cancers, patients are living longer and are more likely to experience complications from BM. The diagnosis of BM drastically worsens long-term survival rates, with multiple metastases being a poor prognostic factor. Until recently, the mainstay of treatment consisted of stereotactic radiosurgery (SRS), surgical resection, whole brain radiation therapy (WBRT), or a combination of these modalities. Systemic chemotherapy has been felt largely ineffective in the treatment of BM due to the presence of the blood–brain barrier (BBB), which includes efflux pumps on brain capillaries. Over the past decade however, researchers have identified therapeutic agents that are able to cross the BBB. These findings could make a multimodality treatment approach possible, consisting of surgery, radiation, immunotherapy, and targeted therapy, which could lead to better disease control in this patient population and prolong survival. In this review, we discuss present evidence on available targeted therapies and their role in the treatment of BM from primary tumors with the highest prevalence of central nervous system (CNS) involvement, specifically non-small cell lung cancer (NSCLC), breast cancer melanoma, and renal cell carcinoma
    corecore