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Simple Summary: In the multi-modal treatment of brain metastasis (BM), the role of systemic therapy
has undergone a recent revolution. Due to the development of multiple agents with modest central
nervous system penetration of the blood-brain barrier, targeted therapies and immune checkpoint
inhibitors are increasingly being utilized alone or in combination with radiation therapy. However,
the adoption of sequential or concurrent strategies varies considerably, and treatment strategies
employed in clinical practice have rapidly outpaced evidence development. Therefore, this review
critically analyzes the data regarding combinatorial approaches for a variety of systemic therapeutics
with stereotactic radiosurgery and provides an overview of ongoing clinical trials.

Abstract: Brain metastasis (BM) represents a common complication of cancer, and in the modern
era requires multi-modal management approaches and multi-disciplinary care. Traditionally, due to
the limited efficacy of cytotoxic chemotherapy, treatment strategies are focused on local treatments
alone, such as whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), and resection.
However, the increased availability of molecular-based therapies with central nervous system (CNS)
penetration now permits the individualized selection of tailored systemic therapies to be used
alongside local treatments. Moreover, the introduction of immune checkpoint inhibitors (ICIs), with
demonstrated CNS activity has further revolutionized the management of BM patients. The rapid
introduction of these cancer therapeutics into clinical practice, however, has led to a significant dearth
in the published literature about the optimal timing, sequencing, and combination of these systemic
therapies along with SRS. This manuscript reviews the impact of tumor biology and molecular profiles
on the management paradigm for BM patients and critically analyzes the current landscape of SRS,
with a specific focus on integration with systemic therapy. We also discuss emerging treatment
strategies combining SRS and ICIs, the impact of timing and the sequencing of these therapies
around SRS, the effect of corticosteroids, and review post-treatment imaging findings, including
pseudo-progression and radiation necrosis.

Keywords: stereotactic radiosurgery; chemotherapy; targeted therapy; immunotherapy; brain metastases

1. Introduction

Brain metastases (BM) represent the most common intracranial neoplasm in adults
and occur in approximately 20–40% of all cancer patients [1]. The most common primary
tumors in patients with BM are lung, breast, melanoma, colorectal, and renal, and these
tumors are associated with a median survival time of 6–12 months [1]. BMs are distributed
along regions of the brain with rich blood flow, with 80% occurring in the cerebral hemi-
spheres, primarily at the grey-white junctional border [2]. Patients often develop symptoms
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consequential to the location of the tumor, either by direct tumor infiltration of critical
functional regions, or due to the associated mass effect. Radiation therapy (RT), in the
form of stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT) is considered
a mainstay anticancer modality in the treatment of BM from solid tumors [3]. However,
the management of BM is based on patient and tumor-specific variables, such as tumor
histology, performance status, prognosis, extent of extracranial disease, presence of tar-
getable actionable mutations, number of lesions, volume of disease, symptoms, and patient
preference [3].

The role of systemic therapy in the treatment of BM is evolving. Previously, its role
was restricted due to variable CNS penetration of the blood-brain barrier (BBB) and limited
activity [4]. Targeted therapies with greater CNS penetration and improved efficacy have
emerged in parallel with the identification of driver mutations, which have led to advances
in drug discovery and development [5]. Immune checkpoint inhibitors (ICIs) represent
another significant advancement in systemic therapy options for BM, as they have shown
promising CNS activity in subsets of patients [5]. As a result, BM can now be managed
with systemic therapy either prior to, concomitantly, or after RT, and various combinations
of RT with systemic therapies are being explored to improve both local and extracranial
disease control, as well as overall survival (OS). This necessitates effective management
strategies from multidisciplinary teams, as treatment decisions must balance the risk
of recurrence/progression with treatment-related side effects. Previous reviews have
compiled data from retrospective and prospective studies of combination approaches [5,6].
However, in this review, we summarize the data from recent studies and clinical trials
supporting the use of BM-directed systemic therapies, such as chemotherapy, targeted
therapy, and immunotherapy, that have been completed or are currently being investigated,
and their integration with SRS for the treatment of BM.

2. Modern Role for Stereotactic Radiosurgery

SRS is a specialized RT technique that delivers a single, high dose of radiation to the
tumor. Although this treatment was previously used in tumors less than 3 cm in maximum
dimension, fractionated approaches of up to five fractions are employed for moderate-large
sized lesions or those in close proximity to critical structures, such as the brainstem, optic
nerves, and optic chiasm.

SRS has undergone rapid technological development over the last decade and contin-
ues to evolve. Its success relies on submillimetric precision in target localization, which
was previously achieved by invasive, fixed stereotactic head frames. Online cone-beam
computed tomography (CT) scanning is now routinely used for precision localization in
modern linac-based radiosurgical systems, reducing the need for skeletal fixation and
permitting fractionation. The CyberKnife® (Accuray Inc., Sunnyvale, CA, USA) and the
Novalis ExacTrac X-Ray 6D (Brainlab, Munich, Germany) systems are two examples among
a number of frameless image-guided stereotactic systems that do not require invasive cra-
nial fixation. For photon-based SRS, a variety of systems are available; the most commonly
used are the GammaKnife® (Elekta AB, Stockholm, Sweden), CyberKnife® (Accuray Inc.,
Sunnyvale, CA, USA) and linac-based systems, all of which have similar efficacy. Modern
GammaKnife® systems also permit the use of mask-based fixation approaches [7]. Particle
radiosurgery has the potential for radiobiological benefits from the higher radiobiological
effectiveness, as well as dosimetric advantages including decreased normal tissue exposure
and improved dose homogeneity as compared to photon based SRS [8]; however, the
dosimetric benefits are generally restricted to large, complex shaped targets, as smaller
targets are in fact treated with superior dosimetric considerations using photon systems [9].
Presently there is a paucity of data on the use of particle therapy in the context of ra-
diosurgery; however, future developments are expected to improve our understanding
of these emerging technologies, particularly as the number of particle therapy facilities
continue to grow.
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SRS is commonly utilized for patients with a disease-specific graded prognostic
assessment (DS-GPA) [10] score over 2, low intracranial disease burden, and minimal
neurological symptoms. When compared to WBRT, a phase III study reported that SRS
produces a similar OS with less decline in neurocognitive function (WBRT plus SRS 53%
vs. 20% SRS alone), but with a significantly increased risk of intracranial relapse [11]. SRS
is preferred for patients with a limited number of BM (4 or fewer lesions) based on the
results from randomized trials [12,13]. The radiation doses are based on tumor dimension,
<2 cm, 2.1–3 cm and >3 cm are 24 Gy, 18 Gy and 15 Gy, respectively, based on the Radiation
Therapy Oncology Group (RTOG) 90-05 study [14]. The efficacy of SRS appears to be
independent of the primary tumor type, as radioresistant tumors (i.e., renal cell carcinoma
and melanoma) have similar control rates as radiosensitive tumors (i.e., breast cancer and
lung cancer) [15,16]. Single fraction SRS is not recommended for lesions >4 cm due to an
unacceptable level of toxicity [17]. However, hypofractionated SRS (HF-SRS) or staged
SRS can be considered for larger lesions [17]. Fractionated SRS is typically delivered to
25–30 Gy over 3–5 fractions and is considered for lesions close to critical structures, such
as the brainstem or the optic apparatus. Some centers utilize the concept of low overall
intracranial disease burden based on total volume of all brain metastases (<15–30 cc) to
select patients to be treated with SRS; however, this parameter has not been defined
adequately and requires prospective validation [4].

In the context of post-operative RT, SRS has replaced WBRT in most instances, but the
issue of the optimal interval between surgery and SRS remains ill-defined [18,19]. Further,
several reports suggest that pre-operative SRS reduces the risk of meningeal metastases and
symptomatic radiation necrosis (RN) compared to post-operative SRS [20,21]. Pre-operative
SRS allows for better target volume delineation, as opposed to a poorly-defined irregularly
shaped surgical cavity in the post-operative setting. It also allows for better tumor control
by reducing the intra-operative seeding of viable tumor cells outside the treated cavity,
hence decreasing the risk of leptomeningeal disease [22]. The rate of symptomatic RN
may be reduced with pre-operative SRS as target delineation is better, less normal brain
is irradiated, and the majority of the irradiated tissue is resected after SRS [21]. One
major limitation of pre-operative SRS is the lack of pathological confirmation prior to SRS.
Moreover, select reports demonstrate that pre-operative SRS has the potential to lead to
increased wound healing complications [23].

In the post-operative setting, high dose HF-SRS provided greater local control (LC)—
defined as radiographic evidence of stable disease, partial response, or complete response,
as compared to lower biological effective dose (BED) regimens (95% vs. 59%) [24]. For
example, 25 Gy in 5 fractions (BED10 of 37.5 Gy) was not adequate to control microscopic
disease as compared to 30 Gy in 5 fractions (BED10 > 48 Gy) which had excellent tu-
mor bed control. Similarly, another study reported that HF-SRS after resection of BM
was well tolerated and had improved LC with BED10 ≥ 48 (i.e., 30 Gy/5 fractions and
27 Gy/3 fractions) [25].

The LC rates following SRS for 5 or more intracranial lesions are comparable to those
for fewer lesions [26]; however, these patients continue to experience a high rate of distant
intracranial failure, and therefore alternative treatment strategies, such as hippocampal-
avoidant whole brain radiotherapy (HA-WBRT), should be considered. There is evolving
evidence that primary SRS alone can be used in select patients with >10 lesions [27]. A phase
III randomized trial of SRS vs. WBRT in 72 patients with 4–15 BMs (NCT01592968) has also
been presented, and demonstrated that SRS was associated with a reduced risk of neurocog-
nitive deterioration relative to WBRT without compromising OS, but clearly with higher
risk of intracranial relapse [28]. A prospective phase III trial (NCT03550391) will compare
stereotactic radiosurgery with HA-WBRT plus memantine for 5–15 brain metastases.
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3. Stereotactic Radiosurgery and Systemic Therapies
3.1. Chemotherapy

Most traditional chemotherapeutic drugs have variable, but limited, BBB penetration
(Figure 1), and are usually used in conjunction with local treatments like RT. Several phase
II studies evaluating temozolomide (TMZ) and WBRT have shown that this combination
increases LC, but not OS [29,30]. Platinum and pemetrexed have been used for the treatment
of non-small cell lung cancer (NSCLC) BM, either alone or in combination with other
treatments [31]. For patients with BM from breast cancer or melanoma, there is no particular
chemotherapy regimen that has been shown to prolong survival.
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Figure 1. Categorization of various chemotherapeutic drugs or regimens based on CNS response
(defined as proportion of patients with stable disease, partial response, or complete response) into
low (<25%), medium (25–50%), and high (>50%).

There are limited data on the outcomes of concurrent chemotherapy with SRS for the
treatment of BM. Cagney et al. reported the outcomes of patients treated with pemetrexed
and SRS for lung cancer BM, and found that the combination was associated with a reduced
likelihood of developing new brain metastases (p = 0.006) and a reduced need for brain-
directed salvage RT (p = 0.005) [32]. However, the combination of pemetrexed and SRS
was found to be associated with increase in radiographic RN (HR 2.70, 95% CI 1.09–6.70,
p = 0.03). The authors concluded that patients who receive pemetrexed after brain-directed
SRS tend to benefit from increased intracranial disease control at the potential cost of
radiation-related RN. Shen and colleagues also demonstrated the safety of concurrent
chemotherapy and SRS in 193 patients, of whom 37% were delivered with concurrent
systemic therapy [33]. Kim and colleagues evaluated the outcomes in 1650 patients who
presented with 2843 intracranial metastases [34]; among these, 445 patients (27%) were
treated with SRS and concurrent systemic therapy. The risk of RN in those treated with SRS
and concurrent systemic therapy was not increased as compared to SRS alone (6.6% and
5.3%); however, concurrent systemic therapy was linked to a higher rate of radiographic
RN in lesions treated with upfront SRS and WBRT (8.7 vs. 3.7%, p = 0.04). Further study is
warranted to explore whether symptomatic RN occurs more frequently in patients receiving
pemetrexed along with SRS, and detailed analyses of other systemic therapy combinations
are clearly needed to inform clinical practice.

3.2. Targeted Therapies

The use of targeted therapies in patients with actionable alterations represents a
popular topic in BM research. Patients with these specific molecular subtypes respond to
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targeted therapies at higher rates than to chemotherapeutic agents or ICIs. As patients with
BM have traditionally been excluded from clinical trials assessing systemic therapies in
BM patients, the role of these systemic treatments, particularly when used in conjunction
with SRS for BM, is unclear. This section summarizes the data regarding the combination
of various targeted therapies with SRS.

3.2.1. Anti-Human Epidermal Growth Factor Receptor 2 (HER-2) Drug Conjugates and
Anti HER-2 Tyrosine Kinase Inhibitors (TKIs)

First-generation anti-HER2 agents have limited BBB permeability and minimum
intracranial activity. Newer-generation agents have better CNS penetration, intracranial
activity, and the potential for combinatorial synergy with SRS. In one retrospective series
of HER2+ breast cancer patients treated with SRS with or without lapatinib [35], LC was
significantly higher in the lapatinib group. In another series, the addition of concurrent
lapatinib to SRS was associated with an improved rate of complete response compared to
SRS alone, without an increased risk of RN [36]. Parsai et al. reported improved survival
(27.3 vs 19.5 months, p = 0.03) when lapatinib was used concurrently with SRS, with
reduction in local failure at 12 months (5.7% vs 15.1%, p < 0.01) [37]. Not all studies have
demonstrated such a benefit; in fact, the prospective RTOG 1119 trial, a randomized study
of WBRT or SRS with or without concurrent lapatinib, showed no increase in 12-week
overall response rate with combined treatment [38]. Therefore, well-controlled clinical trials
are clearly needed to generate high-quality evidence to support such combinatorial use.

The experience with small numbers of patients suggests that combining SRS with
trastuzumab emtansine (T-DM1) might result in high rates of RN. In one study, SRS was
given concurrently with T-DM1 in 4 patients, and sequentially in 8 patients [39]. The
concurrent group had a 50% rate of RN while the sequential group had a 28.6% rate of
RN. In a separate report, RN was observed in 40% of patients that received T-DM1 [40]. In
contrast, Mills et al. reported that the combination of SRS and T-DM1 was well tolerated,
with only 3% of patients reporting RN [41]. Hence, prospective studies to evaluate the
ideal dose of SRS and timing of T-DM1 are warranted.

3.2.2. Epidermal Growth Factor Receptor (EGFR)-TKIs

SRS can disrupt the BBB, thereby increasing the CNS penetration of EGFR-TKIs to
penetrate the BBB [39]. Therefore, combinatorial SRS and TKIs approaches may prove
to be useful, but few trials have tested this robustly. In part, the challenge lies in the
fact that SRS alone yields very high LC rates, and therefore, any synergistic benefit from
TKIs would likely not readily be observed [40]. However, SRS is an ineffective modality
for controlling microscopic disease in the brain, which TKIs might be able to control,
and therefore, intracranial disease control (via reduction in distant intracranial failures)
could prove to be the most relevant endpoint for such combinatorial trials. An intriguing
possibility is whether such improved intracranial control could translate to meaningful
survival improvements, and this would only occur in clinical scenarios where patients
have high risks of dying from intracranial progression. The role of EGFR in modulating
radiosensitivity has been documented in numerous preclinical and in vitro studies [42].
One multicenter retrospective report underscored this possibility following the treatment
of EGFR-mutated NSCLC BM with either SRS followed by EGFR-TKI, WBRT followed by
EGFR-TKI, or EGFR-TKI followed by SRS or WBRT [43]. Combinatorial SRS and EGFR-TKI
yielded the longest OS, whereas EGFR-TKI alone had the lowest survival (46 months vs.
25 months). In another study, patients with NSCLC BM were divided into two categories
depending on the use of EGFR-TKI (at the time of the first SRS or post-SRS within 3 weeks)
versus patients who received SRS alone. Patients receiving EGFR-TKI concurrently or soon
after SRS had significantly longer OS (25.5 vs. 11.0 months), in spite of equivalent LC [44].
LC has been shown to be superior in some retrospective studies of patients with NSCLC
BM treated with SRS in combination with TKIs such as gefitinib, erlotinib, or icotinib;
in one study, the LC rate was 83.3% in the combination therapy group and 61.5% in the
SRS monotherapy group [45]. In another report, intracranial control was improved in
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patients who received RT followed by icotinib versus icotinib alone (22.4 vs. 13.9 months,
p = 0.043) [46].

Osimertinib, a third-generation EGFR TKI, has high CNS penetration [47] (Figure 1).
In a retrospective study of NSCLC BM patients, Xie et al. compared the outcomes of
patients treated with RT and osimertinib versus osimertinib alone [48]. There was no
difference in time to treatment failure, progression-free survival (PFS), or OS between the
groups. These limited data provide initial safety and possible efficacy signals. However,
no level 1 evidence (randomized controlled clinical trial) exists to support the routine
combinatorial approach of SRS plus EGFR TKIs in NSCLC BMs, and such studies are
critically needed [49].

3.2.3. Anaplastic Lymphoma Kinase (ALK) Inhibitors

Rearrangements of the ALK gene have been found in around 3–7% of NSCLC cases [50].
Concurrent RT and ALK-TKIs has also been shown in preclinical studies to have a synergis-
tic effect on tumor growth and microvessel density, possibly resulting in better LC [50,51].
A multi-institutional study [52] showed that patients treated with SRS or WBRT and
ALK inhibitors (crizotinib, ceritinib, alectinib) had a median OS of 49.5 months (95% CI,
29.0 months compared to not reached) and a median intracranial progression-free survival
of 11.9 months (95% CI, 10.1 to 18.2 months). Prognostic factors such as Karnofsky per-
formance status (KPS) > 90, absence of extra-cerebral metastases, and no history of ALK
inhibitor treatment before the development of BM were associated with improved OS. In a
small retrospective review, Choi et al. demonstrated that SRS combined with crizotinib
yielded excellent LC, especially for patients with oligometastatic disease (12 months PFS—
84.2%). Only one patient required hospitalization due to brain edema after SRS and was
treated with corticosteroids alone. However, to date, no level 1 evidence supporting this
combinatorial approach has been generated.

3.2.4. Angiogenesis Inhibitors

Antiangiogenic drugs, such as bevacizumab, block vascular endothelial growth factor
(VEGF), which inhibits tumor angiogenesis and reduces intratumoral hypoxia, making
them potential RT sensitizers. Low doses of RT facilitate tumor growth and metastasis
in mouse models by increasing angiogenesis and activating VEGFR2 [53]. Wang et al.
prospectively evaluated the combination of SRS and bevacizumab for the treatment of BM
with extensive edema. Bevacizumab was administered between 3–10 days after completion
of SRS for a minimum of two cycles (5 mg/kg, at 2-week intervals) [54]. They reported
no severe toxicity, and no recurrent edema or RN. Yomo et al. reported on salvage SRS
with adjuvant bevacizumab for heavily pre-treated recurrent BM [55]. The first cycle of
bevacizumab (7.5–10 mg/kg intravenous) was given after salvage SRS. With a median of 4
(range 2–10) cycles of bevacizumab, no neurotoxicity was reported, and the combination
provided adequate radiographic response and neurologic palliation. Guinde et al. reported
no systemic or cerebral adverse events in patients with NSCLC BM receiving SRS, and
bevacizumab [56]. Once again, the quality of these data and the level of evidence remains
weak, and well-designed clinical trials are desperately needed in this domain.

3.2.5. BRAF Inhibitors

The mitogen-activated protein kinase (MAPK) pathway is often upregulated in cancer
cells, and it is also activated by exposure to ionizing radiation [57,58]. Multiple retro-
spective studies have demonstrated high efficacy rates of BRAF inhibitors combined with
SRS for patients with melanoma BM, overcoming the preconceived notions of radiore-
sistance [59,60]. In a prospective study involving 80 patients with melanoma BM, SRS
combined with BRAF inhibitors was found to increase OS (median OS 11.2 vs. 4.5 months)
compared to SRS alone [61]. A multicenter retrospective cohort study reported on patients
with melanoma BM treated with SRS and BRAF inhibitors [62]. The asymptomatic intracra-
nial bleeding rate in the SRS plus BRAF inhibitor group was 10.4% vs. 3% in the group
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without the BRAF inhibitor (p = 0.03). On the other hand, other studies have reported
the bleeding rate to be very low, approximately 2.8%, in patients treated with SRS and
BRAF inhibitors [63,64]. In summary, low-level evidence is available to suggest that the
combination of SRS and BRAF inhibition improves LC and OS, but with the possibility of
increased intratumoral bleeding. Randomized clinical trials are required to define the risks
and benefits more clearly.

3.2.6. MEK Inhibitors

The MEK inhibitor trametinib is usually combined with BRAF inhibitors. Patel et al.
reported the initial experience of the combination of BRAF and MEK inhibition with SRS
for BRAF-mutant melanoma BM with six patients being treated with SRS within 3 months
of BRAF and MEK inhibitor administration [65]. The median OS was 23.1 months from the
date of BRAF and MEK inhibitor administration. There was no evidence of increased or
unexpected toxicity with the addition of SRS. In another study, 39 patients received a BRAF
inhibitor ± trametinib concurrently with SRS, and the median PFS was 12.7 months (95%
CI: 8.3–18.5) [66]. Since the number of patients treated with MEK and SRS was small in both
the studies, definitive recommendations about safety cannot be drawn, and prospective
trials are needed.

3.2.7. Cyclin-Dependent Kinase Inhibitors (CDK4/6)

Cyclin-dependent kinase (CDK) inhibitors, namely palbociclib, ribociclib and abe-
maciclib were recently granted FDA approval and are currently prescribed in combination
with hormone therapy to treat hormone receptor positive, HER2 negative metastatic breast
cancer [67]. Preclinical data suggest possible synergistic effects with RT [68]. However,
data regarding toxicity when combining CDK4/6 inhibitors with RT are scarce. Figura et al.
reported retrospective data of breast BM treated by CDK4/6 inhibitors (either palbociclib
or abemaciclib) with (43%), before (21%), or after (36%) SRS [69]. There was no increase in
neurotoxicity related to the combination therapy. Two lesions (5%) developed RN, both of
which had received prior RT. A combination treatment of SRS and a CDK inhibitor appears
to be feasible based on this study, but once again the quality and quantity of data is sparse.

Several clinical trials are currently ongoing to evaluate and study the combination of
SRS with various targeted agents for patients with BM, as summarized in Table 1.

Table 1. Ongoing trials of SRS and targeted therapies in patients with brain metastasis.

Trial
Registration No. Study Location Tumor Type Study

Design Systemic Therapy Agent n Primary
Endpoint

Study Start
Date

Estimated
Completion

Date

NCT04147728 Peking University Third
Hospital NSCLC Phase II Anlotinib 50 EI Dec 2019 Dec 2022

NCT04643847 First People’s Hospital
of Hangzhou NSCLC Phase II Almonertinib 47 DOR Nov 2020 Nov 2023

NCT02726568 Betta Pharmaceuticals
Co., Ltd. NSCLC Phase II Icotinib 30 PFS Mar 2016 Dec 2022

NCT03535363 Case Comprehensive
Cancer Center NSCLC Phase I Osimertinib 6 MTD Oct 2018 Aug 2021

NCT03769103 British Columbia
Cancer Agency NSCLC Phase II Osimertinib 76 PFS Mar 2019 April 2025

NCT03497767 Trans-Tasman Radiation
Oncology Group NSCLC Phase II Osimertinib 80 PFS Aug 2019 March 2024

NCT04856475 Jules Bordet Institute Breast Phase II Neratinib 104 ORR July 2021 July 2025

NCT03190967 National Cancer
Institute (NCI) Breast Phase I/II T-DM1 and Metronomic

Temozolomide 125 MTD April 2018 June 2023

NCT04585724 Emory University Breast Phase I Abemaciclib, Ribociclib, or
Palbociclib 25 AE June 2020 Oct 2021
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Table 1. Cont.

Trial
Registration No. Study Location Tumor Type Study

Design Systemic Therapy Agent n Primary
Endpoint

Study Start
Date

Estimated
Completion

Date

NCT04074096 UNICANCER Melanoma Phase II Binimetinib and
Encorafenib 150 PFS Sep 2021 Sep 2028

NCT03898908
Grupo Español

Multidisciplinar de
Melanoma

Melanoma Phase II Binimetinib and
Encorafenib 38 ORR July 2019 Oct 2023

NCT03430947 Technische Universität
Dresden Melanoma Phase II Vemurafenib and

Cobimetinib 20 ORR July 2018 July 2022

NCT02974803 Canadian Cancer Trials
Group Melanoma Phase II Dabrafenib and

Trametinib 6 ORR Nov 2016 June 2021

Abbreviations: n = number; NSCLC = non-small cell lung cancer; EI = edema index; DOR = duration of response; PFS = progression-free
survival; AE = adverse events; MTD = maximum tolerated dose; RR = response rate; ORR = objective response rate.

4. SRS and Immunotherapy

SRS is known to increase both innate and adaptive immune responses, making tumor
cells more susceptible to T-cell-mediated killing [70] (Figure 2). The aim is to evoke an
immune response that will not only boost local effects but also lead to an abscopal response,
which occurs outside of the irradiated area [70]. Large registry studies have demonstrated
improved OS with SRS and ICIs in patients with BM [71], yet several questions regarding
appropriate timing, fractionation, toxicities, and out-of-field responses remain unanswered,
and thus several trials are attempting to address these knowledge gaps [72].
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4.1. Timing and Sequencing

The optimal sequence for these modalities is still unclear, with conflicting published
results [72]. Several studies suggest that SRS acts as an antigenic primer by releasing
neoantigens from dying cancer cells, and the resultant activated T-cells are further stimu-
lated by ICIs to sustain the immune response. Furthermore, SRS eradicates the inhibitory
T-cells in the tumor microenvironment, which would otherwise dampen the immune
response [73,74]. This hypothesis would suggest that close temporal sequencing of SRS
and ICIs is required. Underscoring this hypothesis, ipilimumab before SRS resulted in a
higher partial response rate as compared to ipilimumab administered after SRS (40% vs.
16.7%) [75]. However, a large retrospective study showed that neoadjuvant ICI had no
additional advantage over adjuvant ICI [76].

Some studies advocate for the administration of SRS immediately before ICI, with
the rationale that activated T-cells in the tumor microenvironment would be killed by
SRS. Conceptually, using SRS prior to ICIs would put fewer activated T-cells at risk. In a
retrospective analysis of melanoma BM, RT followed by ICI was compared to ICI followed
by RT [77]. The RT followed by ICI group had superior survival as compared to the ICI
followed by RT group. Another series reported a significantly longer local recurrence-free
duration in melanoma BM patients treated with SRS either before or with ipilimumab as
compared to patients treated with SRS after completing ipilimumab (median 19.6 months
vs. median 3 months) [78].

The concept of concurrent treatment of ICI with to SRS is still up for debate, with some
studies using a 2-week window while others extending this to 1 month [79]. Although the
timing of SRS in relation to ICIs is likely to be influenced by the agent of choice and its
half-life, as well as the mechanism of immune activation and response, it appears that ICIs
given four weeks before or after SRS have shown the best results [80]. Prospective studies
in BM patients are urgently needed to assess the timing and sequencing of ICIs with SRS
(Table 2).

Table 2. Ongoing trials of SRS and immune checkpoint inhibitors in patients with brain metastasis.

Trial
Registration No. Study Location Tumor Type Study

Design Immunotherapy Agent n Primary
Endpoint

Study Start
Date

Estimated
Completion

Date

NCT03483012 Dana-Farber Cancer
Institute Breast Phase II Atezolizumab 45 PFS Sep 2021 Sep 2025

NCT03449238 Weill Medical College
of Cornell University Breast Phase II Pembrolizumab 41 RR, OS Nov 2018 Dec 2026

NCT03807765
H. Lee Moffitt Cancer
Center and Research

Institute
Breast Phase I Nivolumab 14 DLT Jan 2019 Jan 2022

NCT02886585 Massachusetts General
Hospital

Any solid
tumor Phase II Pembrolizumab 102 RR, OS Oct 2016 Sep 2022

NCT02097732 University of Michigan
Rogel Cancer Center Melanoma Phase II Ipilimumab 40 LC April 2014 July 2020

NCT03340129 Melanoma Institute
Australia Melanoma Phase II Nivolumab & Ipilimumab 218 NSCD Aug 2019 Aug 2025

NCT03297463 Masonic Cancer Center,
University of Minnesota Melanoma Phase I/II Ipilimumab 40 MTD, ORR Jan 2018 Feb 2020

NCT02716948
Sidney Kimmel

Comprehensive Cancer
Center

Melanoma Phase I Nivolumab 90 AE Jun 2016 Mar 2023

NCT02858869 Emory University Melanoma,
NSCLC Phase I Pembrolizumab 30 DLT Oct 2016 Oct 2021

NCT02696993 M.D. Anderson Cancer
Center NSCLC Phase I/II Nivolumab & Ipilimumab 88 DLT, PFS Dec 2016 Dec 2020

NCT02978404
Centre hospitalier de

l’Université de
Montréal (CHUM)

NSCLC,
RCC Phase II Nivolumab 26 PFS Jun 2017 Jun 2022

n = number; NSCLC = non-small cell lung cancer; RCC = renal cell carcinoma; OS = overall survival; PFS = progression-free survival; DLT
= dose limiting toxicity; AE = adverse events; LC = local control; MTD = maximum tolerated dose; RR = response rate; ORR = objective
response rate; NSCD = neurological specific cause of death.



Cancers 2021, 13, 3682 10 of 15

4.2. Impact of Corticosteroids

The immunosuppressive effect of corticosteroids may reduce the efficacy of a PD-
L1 blockade. Kotecha et al. reported that in patients who received SRS and concurrent
ICI, median survival was markedly better with steroid avoidance during the treatment
(cumulative dose during and after SRS: 0 mg dexamethasone: 25.1 months vs. ≤60 mg:
10.2 months, p = 0.002) [76]. In another multi-institutional study, patients who were PD-L1-
naïve with advanced NSCLC were treated with a single-agent PD-L1 blockade [81], and
baseline corticosteroid use of ≥10 mg of prednisone equivalent was associated with poorer
outcomes. It is recommended that corticosteroids be used with caution before starting ICIs.

4.3. Pseudo-Progression and Radiation Necrosis

The synergistic combination of SRS and ICIs also raises concerns about possible side
effects, including pseudo-progression and RN [82]. Hubbeling et al. studied adverse
radiation effects (AREs)—the imaging correlate of RN in relation to ICI treatment status,
RT type, and timing of treatment [83]. They concluded that ICIs and RT did not increase
the risk of AREs. On the other hand, Martin et al. evaluated the risk of RN in melanoma,
NSCLC, or renal cell carcinoma BM in patients who received a combination of ICIs and
RT [84], and discovered a correlation between the occurrence of symptomatic RN and
the use of combination therapy, particularly in melanoma patients. Despite reports of an
increased risk of RN in some studies, a meta-analysis of the published literature found
no evidence of a higher risk than would be predicted with SRS alone [85]. Clearly, the
databases for this approach are limited, and of modest quality, given their retrospective
nature, and prospective randomized trials are required.

5. Future Directions and Conclusions

Recently, the clinical management and understanding of BM has evolved significantly.
We have seen a paradigm shift in the management of these patients, and the increased
complexity of multi-disciplinary care of these patients only becomes more complicated as
clinical practice outpaces evidence development. There remain several key areas of study
which are critically needed in clinical trial designs for future studies. First, there needs to
be a standardized inclusion of patients with BM on clinical trials testing novel agents, with
a key effort to include those with treated or stable disease, active BM, and leptomeningeal
disease. This is in line with current recommendations from key society guidelines yet has
not been widely adopted. Second, as patients with BM are subgrouped into molecular
classes, there is a clear need to understand whether the brain metastasis exhibits the same
molecular profile as the primary and, if discordant responses are observed, to develop
minimally-invasive means of profiling intracranial disease. Third, there is a critical need
to better understand if toxicities in patients treated with combination approaches are
related to the systemic therapy, RT, or both treatments. This is unclear in the published
literature, given the differences in reporting adverse events or dose-limiting toxicities
(typically related to drugs rather than dose-limiting radiation). Fourth, there needs to be
a collective effort to homogenize clinical trial designs to better evaluate combination or
sequential strategies for BM management. For example, as displayed in Table 2, there are a
wide variety of endpoints for the currently available clinical trials, including toxicity, local
control, response rate, and survival. Moreover, nine of the ten studies represented are single
institution trials, and none of the trials represent phase III randomized studies. Increased
cross-institutional effort with multi-institutional and cooperative group designs may allow
for larger samples sizes, better external validity of the results, faster accrual, and improved
designs to meaningfully impact clinical practice. Finally, as novel immunotherapies, such
as anti-CD47 agents, cancer vaccines, and CAR T-cell therapies, are introduced into clinical
practice, we recommend careful prospective evaluation of their safety in combination
with RT.
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