60 research outputs found

    Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates

    Get PDF
    Chemotherapy-induced amenorrhea (CIA) often occurs in pre- and peri-menopausal BC patients, and while cancer/chemotherapy and abrupt estrogen loss have separately been shown to affect cognition and brain function, studies of the cognitive effects of CIA are equivocal, and its effects on brain function are unknown. Functional MRI (fMRI) during a working memory task was used to prospectively assess the pattern of brain activation and deactivation prior to and one month after chemotherapy in BC patients who experienced CIA (n=9), post-menopausal BC patients undergoing chemotherapy (n=9), and pre- and post-menopausal healthy controls (n=6 each). Neurocognitive testing was also performed at both time points. Repeated measures general linear models were used to assess statistical significance, and age was a covariate in all analyses. We observed a group-by-time interaction in the combined magnitudes of brain activation and deactivation (p = 0.006): the CIA group increased in magnitude from baseline to post-treatment while other groups maintained similar levels over time. Further, the change in brain activity magnitude in CIA was strongly correlated with change in processing speed neurocognitive testing score (r=0.837 p=0.005), suggesting this increase in brain activity reflects effective cognitive compensation. Our results demonstrate prospectively that the pattern of change in brain activity from pre- to post-chemotherapy varies according to pre-treatment menopausal status. Cognitive correlates add to the potential clinical significance of these findings. These findings have implications for risk appraisal and development of prevention or treatment strategies for cognitive changes in CIA

    Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: the impact of APOE and smoking

    Get PDF
    PURPOSE: This study examined the association of post-treatment changes in cognitive performance, apolipoprotein E (APOE), and smoking in breast cancer patients treated with adjuvant therapy. PARTICIPANTS AND METHODS: Breast cancer patients treated with chemotherapy (N = 55, age = 51.9 ± 7.1, education = 15.7 ± 2.6) were evaluated with a battery of neuropsychological tests prior to chemotherapy and at 1, 6, and 18 months post-chemotherapy. Matched groups of breast cancer patients not exposed to chemotherapy (N = 68, age = 56.8 ± 8.3, education = 14.8 ± 2.2) and healthy controls (N = 43, age = 53.0 ± 10.1, education = 15.2 ± 2.6) were evaluated at similar intervals. APOE epsilon 4 carrier status (APOE4+) and smoking history were also evaluated. RESULTS: The detrimental effect of APOE4+ genotype on post-treatment cognitive functioning was moderated by smoking history, that is, patients without a smoking history had significantly lower performance on measures of processing speed and working memory compared with those with a smoking history and healthy controls. Exploratory analyses revealed that APOE4+ patients without a smoking history who were exposed to chemotherapy showed a decline in performance in processing speed, compared with patients with a smoking history. A similar but less pronounced pattern was seen in the no chemotherapy group (primarily endocrine treatment). For working memory, the APOE4+ by smoking interaction was observed in the no chemotherapy group only. CONCLUSIONS: The association between APOE status, breast cancer treatment, and cognitive functioning was moderated by smoking history suggesting that both chemotherapy and endocrine therapy interact with APOE status and smoking to influence cognition. A putative mechanism is that smoking corrects a deficit in nicotinic receptor functioning and dopamine levels in APOE4+ individuals

    Reliable change in neuropsychological assessment of breast cancer survivors

    Get PDF
    BACKGROUND: The purpose of this study was to enhance the current understanding and interpretation of longitudinal change on tests of neurocognitive function in individuals with cancer. Scores on standard neuropsychological instruments may be impacted by practice effects and other random forms of error. METHODS: The current study assessed the test-retest reliability of several tests and overarching cognitive domains comprising a neurocognitive battery typical of those used for research and clinical evaluation using relevant time frames. Practice effect-adjusted reliable change confidence intervals for test-retest difference scores based on a sample of patient-matched healthy controls are provided. RESULTS: By applying reliable change confidence intervals to scores from two samples of breast cancer patients at post-treatment follow-up assessment, meaningful levels of detectable change in cognitive functioning in breast cancer survivors were ascertained and indicate that standardized neuropsychological instruments may be subject to limitations in detection of subtle cognitive dysfunction over clinically relevant intervals, especially in patient samples with average to above average range baseline functioning. CONCLUSIONS: These results are discussed in relation to reported prevalence of cognitive change in breast cancer patients along with recommendations for study designs that enhance detection of treatment effects

    Cognitive effects of cancer and its treatments at the intersection of aging: what do we know; what do we need to know?

    Get PDF
    There is a fairly consistent, albeit non-universal body of research documenting cognitive declines after cancer and its treatments. While few of these studies have included subjects aged 65 years and older, it is logical to expect that older patients are at risk of cognitive decline. Here, we use breast cancer as an exemplar disease for inquiry into the intersection of aging and cognitive effects of cancer and its therapies. There are a striking number of common underlying potential biological risks and pathways for the development of cancer, cancer-related cognitive declines, and aging processes, including the development of a frail phenotype. Candidate shared pathways include changes in hormonal milieu, inflammation, oxidative stress, DNA damage and compromised DNA repair, genetic susceptibility, decreased brain blood flow or disruption of the blood-brain barrier, direct neurotoxicity, decreased telomere length, and cell senescence. There also are similar structure and functional changes seen in brain imaging studies of cancer patients and those seen with "normal" aging and Alzheimer's disease. Disentangling the role of these overlapping processes is difficult since they require aged animal models and large samples of older human subjects. From what we do know, frailty and its low cognitive reserve seem to be a clinically useful marker of risk for cognitive decline after cancer and its treatments. This and other results from this review suggest the value of geriatric assessments to identify older patients at the highest risk of cognitive decline. Further research is needed to understand the interactions between aging, genetic predisposition, lifestyle factors, and frailty phenotypes to best identify the subgroups of older patients at greatest risk for decline and to develop behavioral and pharmacological interventions targeting this group. We recommend that basic science and population trials be developed specifically for older hosts with intermediate endpoints of relevance to this group, including cognitive function and trajectories of frailty. Clinicians and their older patients can advance the field by active encouragement of and participation in research designed to improve the care and outcomes of the growing population of older cancer patients

    Cognitive function prior to systemic therapy and subsequent well‐being in older breast cancer survivors: Longitudinal findings from the Thinking and Living with Cancer Study

    Get PDF
    ObjectiveTo investigate the relationships between self‐reported and objectively measured cognitive function prior to systemic therapy and subsequent well‐being outcomes over 24 months in older breast cancer survivors.MethodsData were from 397 women aged 60 to 98 diagnosed with non‐metastatic breast cancer in the Thinking and Living with Cancer Study recruited from 2010‐2016. Cognitive function was measured at baseline (following surgery, prior to systemic therapy) using neuropsychological assessments of attention, processing speed, and executive function (APE), learning and memory (LM), and the self‐reported FACT‐Cog scale. Well‐being was measured using the FACT‐G functional, physical, social, and emotional well‐being domain scales at baseline and 12 and 24 months later, scaled from 0 (low) to 100 (high). Linear mixed‐effects models assessed the relationships between each of baseline APE, LM, and FACT‐Cog quartiles with well‐being scores over 24 months, adjusted for confounding variables.ResultsAt baseline, older survivors in the lowest APE, LM, and FACT‐Cog score quartiles experienced poorer global well‐being than those in the highest quartiles. At 24 months, older survivors tended to improve in well‐being, and there were no differences according to baseline APE or LM scores. At 24 months, mean global well‐being was 80.3 (95% CI: 76.2‐84.3) among those in the lowest vs 86.6 (95% CI: 83.1‐90.1) in the highest FACT‐cog quartile, a clinically meaningful difference of 6.3 points (95% CI: 1.5‐11.1).ConclusionsAmong older breast cancer survivors, self‐reported, but not objective cognitive impairments, were associated with lower global well‐being over the first 2 years of survivorship.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155908/1/pon5376.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155908/2/pon5376_am.pd

    Gray matter density reduction associated with adjuvant chemotherapy in older women with breast cancer

    Get PDF
    PURPOSE: The purpose of this study was to evaluate longitudinal changes in brain gray matter density (GMD) before and after adjuvant chemotherapy in older women with breast cancer. METHODS: We recruited 16 women aged ≄ 60 years with stage I-III breast cancers receiving adjuvant chemotherapy (CT) and 15 age- and sex-matched healthy controls (HC). The CT group underwent brain MRI and the NIH Toolbox for Cognition testing prior to adjuvant chemotherapy (time point 1, TP1) and within 1 month after chemotherapy (time point 2, TP2). The HC group underwent the same assessments at matched intervals. GMD was evaluated with the voxel-based morphometry. RESULTS: The mean age was 67 years in the CT group and 68.5 years in the HC group. There was significant GMD reduction within the chemotherapy group from TP1 to TP2. Compared to the HC group, the CT group displayed statistically significantly greater GMD reductions from TP1 to TP2 in the brain regions involving the left anterior cingulate gyrus, right insula, and left middle temporal gyrus (pFWE(family-wise error)-corrected < 0.05). The baseline GMD in left insula was positively correlated with the baseline list-sorting working memory score in the HC group (pFWE-corrected < 0.05). No correlation was observed for the changes in GMD with the changes in cognitive testing scores from TP1 to TP2 (pFWE-corrected < 0.05). CONCLUSIONS: Our findings indicate that GMD reductions were associated with adjuvant chemotherapy in older women with breast cancer. Future studies are needed to understand the clinical significance of the neuroimaging findings. This study is registered on ClinicalTrials.gov (NCT01992432)

    Symptom burden among older breast cancer survivors: The Thinking and Living With Cancer (TLC) study

    Get PDF
    Background: Little is known about longitudinal symptom burden and its consequences for well-being, and if lifestyle moderates burden in older survivors. Methods: We report on 36-month data from survivors 60+ with newly diagnosed non-metastatic breast cancer and non-cancer controls recruited August 2010-June 2016. Symptom burden was a sum of self-reported symptoms/diseases: pain (yes/no), fatigue (FACT-fatigue), cognitive (FACT-cog), sleep problems (yes/no), depression (CES-D), anxiety (STAI), and cardiac problems and neuropathy (yes/no). Well-being was measured using the FACT-G, scaled from 0–100. Lifestyle included smoking, alcohol use, BMI, physical activity, and leisure activities. Mixed models assessed relationships between treatment group (chemotherapy +/− hormonal, hormonal only, control) and symptom burden, lifestyle, and covariates. Separate models tested the effects of fluctuations in symptom burden and lifestyle on function. Results: All groups reported high baseline symptoms, and levels remained high over time; survivor-control differences were most notable for cognitive and sleep problems, anxiety, and neuropathy. The adjusted burden score was highest among chemotherapy-exposed survivors, followed by hormonal therapy vs. controls (p<.001). Burden score was related to physical, emotional, and functional well-being (e.g., survivors with lower vs. higher burden scores had 12.4-point higher physical well-being score). The composite lifestyle score was not related to symptom burden or well-being, but physical activity was significantly associated with each outcome (<.005). Conclusions: Cancer and its treatments are associated with a higher level of actionable symptoms and greater loss of well-being over time in older breast cancer survivors than comparable non-cancer populations, suggesting the need for surveillance and opportunities for intervention

    Cancer-Related Cognitive Outcomes Among Older Breast Cancer Survivors in the Thinking and Living With Cancer Study

    Get PDF
    Purpose To determine treatment and aging-related effects on longitudinal cognitive function in older breast cancer survivors. Methods Newly diagnosed nonmetastatic breast cancer survivors (n = 344) and matched controls without cancer (n = 347) 60 years of age and older without dementia or neurologic disease were recruited between August 2010 and December 2015. Data collection occurred during presystemic treatment/control enrollment and at 12 and 24 months through biospecimens; surveys; self-reported Functional Assessment of Cancer Therapy-Cognitive Function; and neuropsychological tests that measured attention, processing speed, and executive function (APE) and learning and memory (LM). Linear mixed-effects models tested two-way interactions of treatment group (control, chemotherapy with or without hormonal therapy, and hormonal therapy) and time and explored three-way interactions of ApoE (Δ4+ v not) by group by time; covariates included baseline age, frailty, race, and cognitive reserve. Results Survivors and controls were 60 to 98 years of age, were well educated, and had similar baseline cognitive scores. Treatment was related to longitudinal cognition scores, with survivors who received chemotherapy having increasingly worse APE scores (P = .05) and those initiating hormonal therapy having lower LM scores at 12 months (P = .03) than other groups. These group-by-time differences varied by ApoE genotype, where only Δ4+ survivors receiving hormone therapy had short-term decreases in adjusted LM scores (three-way interaction P = .03). For APE, the three-way interaction was not significant (P = .14), but scores were significantly lower for Δ4+ survivors exposed to chemotherapy (−0.40; 95% CI, −0.79 to −0.01) at 24 months than Δ4+ controls (0.01; 95% CI, 0.16 to 0.18; P < .05). Increasing age was associated with lower baseline scores on all cognitive measures (P < .001); frailty was associated with baseline APE and self-reported decline (P < .001). Conclusion Breast cancer systemic treatment and aging-related phenotypes and genotypes are associated with longitudinal decreases in cognitive function scores in older survivors. These data could inform treatment decision making and survivorship care planning

    Medical Care Disruptions During the First Six-Months of the COVID19 Pandemic: The Experience of Older Breast Cancer Survivors

    Get PDF
    Purpose Older cancer survivors required medical care during the COVID-19 pandemic despite infection risks, but there are limited data on medical care in this age group. Methods. We evaluated care disruptions in a longitudinal cohort of non-metastatic breast cancer survivors ages 60-98 from five US regions (n=321). Survivors completed a web-based or telephone survey from May 27, 2020 to September 11, 2020. Care disruptions included self-reported interruptions in ability to see doctors, receive treatment or supportive therapies, or fill prescriptions. Logistic regression models evaluated bivariate and multivariate associations between care disruptions and education, medical, psychosocial and COVID-19-related factors. Multivariate models included age, county COVID-19 rates, comorbidity and post-diagnosis time. Results. There was a high response rate (n=262, 81.6%). Survivors were 32.2 months post-diagnosis (SD 17.5, range 4-73). Nearly half (48%) reported a medical disruption. The unadjusted odds of care disruptions were significantly higher with more education (OR 1.23 per one-year increase, 95% CI 1.09-1.39, p =0.001) and greater depression (OR 1.04 per one-point increase in CES-D score, CI 1.003-1.08, p=0.033); tangible support decreased the odds of disruptions (OR 0.99, 95% CI 0.97-0.99 per one-point increase, p=0.012). There was a trend for associations between disruptions and comorbidity (unadjusted OR 1.13 per 1 added comorbidity, 95% CI 0.99-1.29, p=0.07). Adjusting for covariates, only higher education (p=0.001) and tangible social support (p=0.006) remained significantly associated with having care disruptions. Conclusions. Older breast cancer survivors reported high rates of medical care disruptions during the COVID-19 pandemic and psychosocial factors were associated with care disruptions

    Intrinsic brain activity changes associated with adjuvant chemotherapy in older women with breast cancer: a pilot longitudinal study

    Get PDF
    Purpose Older cancer patients are at increased risk of cancer-related cognitive impairment. The purpose of this study was to assess the alterations in intrinsic brain activity associated with adjuvant chemotherapy in older women with breast cancer. Methods Chemotherapy treatment (CT) group included sixteen women aged ≄ 60 years (range 60–82 years) with stage I-III breast cancers, who underwent both resting-state functional magnetic resonance imaging (rs-fMRI) and neuropsychological testing with NIH Toolbox for Cognition before adjuvant chemotherapy, at time point 1 (TP1), and again within 1 month after completing chemotherapy, at time point 2 (TP2). Fourteen age- and sex-matched healthy controls (HC) underwent the same assessments at matched intervals. Three voxel-wise rs-fMRI parameters: amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo), were computed at each time point. The changes in rs-fMRI parameters from TP1 to TP2 for each group, the group differences in changes (the CT group vs. the HC group), and the group difference in the baseline rs-fMRI parameters were assessed. In addition, correlative analysis between the rs-fMRI parameters and neuropsychological testing scores was also performed. Results In the CT group, one brain region, which included parts of the bilateral subcallosal gyri and right anterior cingulate gyrus, displayed increased ALFF from TP1 to TP2 (cluster p-corrected=0.024); another brain region in the left precuneus displayed decreased fALFF from TP1 to TP2 (cluster level p-corrected=0.025). No significant changes in the rs-fMRI parameters from TP1 to TP2 were observed in the HC group. Although ALFF and fALFF alterations were observed only in the CT group, none of the between-group differences in rs-fMRI parameter changes reached statistical significance. Conclusions Our study results of ALFF and fALFF alterations in the chemotherapy-treated women suggest that adjuvant chemotherapy may affect intrinsic brain activity in older women with breast cancer
    • 

    corecore