1,692 research outputs found

    Coherent switching of semiconductor resonator solitons

    Full text link
    We demonstrate switching on and off of spatial solitons in a semiconductor microresonator by injection of light coherent with the background illumination. Evidence results that the formation of the solitons and their switching does not involve thermal processes.Comment: 3 pages, 5 figure

    Enhanced quantized current driven by surface acoustic waves

    Full text link
    We present the experimental realization of different approaches to increase the amount of quantized current which is driven by surface acoustic waves through split gate structures in a two dimensional electron gas. Samples with driving frequencies of up to 4.7 GHz have been fabricated without a deterioration of the precision of the current steps, and a parallelization of two channels with correspondingly doubled current values have been achieved. We discuss theoretical and technological limitations of these approaches for metrological applications as well as for quantum logics.Comment: 3pages, 4eps-figure

    Heat transport by turbulent Rayleigh-B\'enard convection for $\Pra\ \simeq 0.8and and 3\times 10^{12} \alt \Ra\ \alt 10^{15}:Aspectratio: Aspect ratio \Gamma = 0.50$

    Full text link
    We report experimental results for heat-transport measurements, in the form of the Nusselt number \Nu, by turbulent Rayleigh-B\'enard convection in a cylindrical sample of aspect ratio ΓD/L=0.50\Gamma \equiv D/L = 0.50 (D=1.12D = 1.12 m is the diameter and L=2.24L = 2.24 m the height). The measurements were made using sulfur hexafluoride at pressures up to 19 bars as the fluid. They are for the Rayleigh-number range 3\times 10^{12} \alt \Ra \alt 10^{15} and for Prandtl numbers \Pra\ between 0.79 and 0.86. For \Ra < \Ra^*_1 \simeq 1.4\times 10^{13} we find \Nu = N_0 \Ra^{\gamma_{eff}} with γeff=0.312±0.002\gamma_{eff} = 0.312 \pm 0.002, consistent with classical turbulent Rayleigh-B\'enard convection in a system with laminar boundary layers below the top and above the bottom plate. For \Ra^*_1 < \Ra < \Ra^*_2 (with \Ra^*_2 \simeq 5\times 10^{14}) γeff\gamma_{eff} gradually increases up to 0.37±0.010.37\pm 0.01. We argue that above \Ra^*_2 the system is in the ultimate state of convection where the boundary layers, both thermal and kinetic, are also turbulent. Several previous measurements for Γ=0.50\Gamma = 0.50 are re-examined and compared with the present results.Comment: 44 pages, 18 figures, submitted to NJ

    Heat transport by turbulent Rayleigh-B\'enard convection for $\Pra\ \simeq 0.8and and 4\times 10^{11} \alt \Ra\ \alt 2\times10^{14}:Ultimatestatetransitionforaspectratio: Ultimate-state transition for aspect ratio \Gamma = 1.00$

    Full text link
    We report experimental results for heat-transport measurements by turbulent Rayleigh-B\'enard convection in a cylindrical sample of aspect ratio ΓD/L=1.00\Gamma \equiv D/L = 1.00 (D=1.12D = 1.12 m is the diameter and L=1.12L = 1.12 m the height). They are for the Rayleigh-number range 4\times10^{11} \alt \Ra \alt 2\times10^{14} and for Prandtl numbers \Pra\ between 0.79 and 0.86. For \Ra < \Ra^*_1 \simeq 2\times 10^{13} we find \Nu = N_0 \Ra^{\gamma_{eff}} with γeff=0.321±0.002\gamma_{eff} = 0.321 \pm 0.002 and N0=0.0776N_0 = 0.0776, consistent with classical turbulent Rayleigh-B\'enard convection in a system with laminar boundary layers below the top and above the bottom plate and with the prediction of Grossmann and Lohse. For \Ra > \Ra_1^* the data rise above the classical-state power-law and show greater scatter. In analogy to similar behavior observed for Γ=0.50\Gamma = 0.50, we interpret this observation as the onset of the transition to the ultimate state. Within our resolution this onset occurs at nearly the same value of \Ra_1^* as it does for Γ=0.50\Gamma = 0.50. This differs from an earlier estimate by Roche {\it et al.} which yielded a transition at \Ra_U \simeq 1.3\times 10^{11} \Gamma^{-2.5\pm 0.5}. A Γ\Gamma-independent \Ra^*_1 would suggest that the boundary-layer shear transition is induced by fluctuations on a scale less than the sample dimensions rather than by a global Γ\Gamma-dependent flow mode. Within the resolution of the measurements the heat transport above \Ra_1^* is equal for the two Γ\Gamma values, suggesting a universal aspect of the ultimate-state transition and properties. The enhanced scatter of \Nu\ in the transition region, which exceeds the experimental resolution, indicates an intrinsic irreproducibility of the state of the system.Comment: 17 pages, including 2 pages of data tables and 56 references. Submitted to New J. Phy

    Rayleigh-B\'{e}nard convection in a homeotropically aligned nematic liquid crystal

    Full text link
    We report experimental results for convection near onset in a thin layer of a homeotropically aligned nematic liquid crystal heated from below as a function of the temperature difference ΔT\Delta T and the applied vertical magnetic field HH and compare them with theoretical calculations. The experiments cover the field range 8 \alt h \equiv H/ H_{F} \alt 80 (HF=H_F = is the Fr\'eedericksz field). For hh less than a codimension-two field hct46h_{ct} \simeq 46 the bifurcation is subcritical and oscillatory, with travelling- and standing-wave transients. Beyond hcth_{ct} the bifurcation is stationary and subcritical until a tricritical field ht=57.2h_t= 57.2 is reached, beyond which it is supercritical. The bifurcation sequence as a function of hh found in the experiment confirms the qualitative aspects of the theoretical predictions. However, the value of hcth_{ct} is about 10% higher than the predicted value and the results for kck_c are systematically below the theory by about 2% at small hh and by as much as 7% near hcth_{ct}. At hcth_{ct}, kck_c is continuous within the experimental resolution whereas the theory indicates a 7% discontinuity. The theoretical tricritical field htth=51h_t^{th} = 51 is somewhat below the experimental one. The fully developed flow above RcR_c for h<hcth < h_{ct} is chaotic. For hct<h<hth_{ct} < h < h_t the subcritical stationary bifurcation also leads to a chaotic state. The chaotic states persist upon reducing the Rayleigh number below RcR_c, i.e. the bifurcation is hysteretic. Above the tricritical field hth_t, we find a bifurcation to a time independent pattern which within our resolution is non-hysteretic.Comment: 15 pages incl. 23 eps figure

    Towards a Graphene-Based Quantum Impedance Standard

    Full text link
    Precision measurements of the quantum Hall resistance with alternating current (ac) in the kHz range were performed on epitaxial graphene in order to assess its suitability as a quantum standard of impedance. The quantum Hall plateaus measured with alternating current were found to be flat within one part in 10^7. This is much better than for plain GaAs quantum Hall devices and shows that the magnetic-flux-dependent capacitive ac losses of the graphene device are less critical. The observed frequency dependence of about -8x10^-8/kHz is comparable in absolute value to the positive frequency dependence of plain GaAs devices, but the negative sign is attributed to stray capacitances which we believe can be minimized by a careful design of the graphene device. Further improvements thus may lead to a simpler and more user-friendly quantum standard for both resistance and impedance

    Compendium for precise ac measurements of the quantum Hall resistance

    Full text link
    In view of the progress achieved in the field of the ac quantum Hall effect, the Working Group of the Comite Consultatif d'Electricite et Magnetisme (CCEM) on the AC Quantum Hall Effect asked the authors of this paper to write a compendium which integrates their experiences with ac measurements of the quantum Hall resistance. In addition to the important early work performed at the Bureau International des Poids et Mesures and the National Physical Laboratory, UK, further experience has been gained during a collaboration of the authors' institutes NRC, METAS, and PTB, and excellent agreement between the results of different national metrology institutes has been achieved. This compendium summarizes the present state of the authors' knowledge and reviews the experiences, tests and precautions that the authors have employed to achieve accurate measurements of the ac quantum Hall effect. This work shows how the ac quantum Hall effect can be reliably used as a quantum standard of ac resistance having a relative uncertainty of a few parts in 10^8.Comment: 26 pages, 8 figure

    Quantized charge pumping through a quantum dot by surface acoustic waves

    Full text link
    We present a realization of quantized charge pumping. A lateral quantum dot is defined by metallic split gates in a GaAs/AlGaAs heterostructure. A surface acoustic wave whose wavelength is twice the dot length is used to pump single electrons through the dot at a frequency f=3GHz. The pumped current shows a regular pattern of quantization at values I=nef over a range of gate voltage and wave amplitude settings. The observed values of n, the number of electrons transported per wave cycle, are determined by the number of electronic states in the quantum dot brought into resonance with the fermi level of the electron reservoirs during the pumping cycle.Comment: 8 page

    Continuous spin reorientation in antiferromagnetic films

    Full text link
    We study anisotropic antiferromagnetic one-layer films with dipolar and nearest-neighbor exchange interactions. We obtain a unified phase diagram as a function of effective uniaxial D_e and quadrupolar C anisotropy constants. We study in some detail how spins reorient continuously below a temperature T_s as T and D_e vary.Comment: 3 LaTeX pages, 3 eps figures. Submitted to JMMM on 25 May 2006. Accepted on 21 July 200
    corecore