149 research outputs found

    Monodromy analysis of the computational power of the Ising topological quantum computer

    Full text link
    We show that all quantum gates which could be implemented by braiding of Ising anyons in the Ising topological quantum computer preserve the n-qubit Pauli group. Analyzing the structure of the Pauli group's centralizer, also known as the Clifford group, for n\geq 3 qubits, we prove that the image of the braid group is a non-trivial subgroup of the Clifford group and therefore not all Clifford gates could be implemented by braiding. We show explicitly the Clifford gates which cannot be realized by braiding estimating in this way the ultimate computational power of the Ising topological quantum computer.Comment: 10 pages, 2 figures and 1 table; v2: one more reference added and some typos corrected; Talk given at the VIII International Workshop "Lie Theory and its Applications in Physics", 15-21 June 2009, Varna, Bulgari

    The Multi-Agent Programming Contest: A r\'esum\'e

    Full text link
    The Multi-Agent Programming Contest, MAPC, is an annual event organized since 2005 out of Clausthal University of Technology. Its aim is to investigate the potential of using decentralized, autonomously acting intelligent agents, by providing a complex scenario to be solved in a competitive environment. For this we need suitable benchmarks where agent-based systems can shine. We present previous editions of the contest and also its current scenario and results from its use in the 2019 MAPC with a special focus on its suitability. We conclude with lessons learned over the years.Comment: Submitted to the proceedings of the Multi-Agent Programming Contest 2019, to appear in Springer Lect. Notes Computer Challenges Series https://www.springer.com/series/1652

    Recurrence for discrete time unitary evolutions

    Full text link
    We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.Comment: 27 pages, 5 figures, typos correcte

    Green function approach for scattering quantum walks

    Full text link
    In this work a Green function approach for scattering quantum walks is developed. The exact formula has the form of a sum over paths and always can be cast into a closed analytic expression for arbitrary topologies and position dependent quantum amplitudes. By introducing the step and path operators, it is shown how to extract any information about the system from the Green function. The method relevant features are demonstrated by discussing in details an example, a general diamond-shaped graph.Comment: 13 pages, 6 figures, this article was selected by APS for Virtual Journal of Quantum Information, Vol 11, Iss 11 (2011

    Implementation of Clifford gates in the Ising-anyon topological quantum computer

    Full text link
    We give a general proof for the existence and realizability of Clifford gates in the Ising topological quantum computer. We show that all quantum gates that can be implemented by braiding of Ising anyons are Clifford gates. We find that the braiding gates for two qubits exhaust the entire two-qubit Clifford group. Analyzing the structure of the Clifford group for n \geq 3 qubits we prove that the the image of the braid group is a non-trivial subgroup of the Clifford group so that not all Clifford gates could be implemented by braiding in the Ising topological quantum computation scheme. We also point out which Clifford gates cannot in general be realized by braiding.Comment: 17 pages, 10 figures, RevTe

    Localization of the Grover walks on spidernets and free Meixner laws

    Full text link
    A spidernet is a graph obtained by adding large cycles to an almost regular tree and considered as an example having intermediate properties of lattices and trees in the study of discrete-time quantum walks on graphs. We introduce the Grover walk on a spidernet and its one-dimensional reduction. We derive an integral representation of the nn-step transition amplitude in terms of the free Meixner law which appears as the spectral distribution. As an application we determine the class of spidernets which exhibit localization. Our method is based on quantum probabilistic spectral analysis of graphs.Comment: 32 page

    Disordered Quantum Walks in one lattice dimension

    Full text link
    We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operation is assumed to be deterministic. Each coin is an independent identically distributed random variable with values in the group of two dimensional unitary matrices. We derive sufficient conditions on the probability distribution of the coins such that the system exhibits dynamical localization. Put differently, the tunneling probability between two lattice sites decays rapidly for almost all choices of random coins and after arbitrary many time steps with increasing distance. Our findings imply that this effect takes place if the coin is chosen at random from the Haar measure, or some measure continuous with respect to it, but also for a class of discrete probability measures which support consists of two coins, one of them being the Hadamard coin.Comment: minor change

    Origin and characterization of alpha smooth muscle actin-positive cells during murine lung development

    Get PDF
    © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed PressACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor 10 (Fgf10), Wilms tumor 1 (Wt1), or glioma-associated oncogene 1 (Gli1) contribute to SMC formation from early stages of lung development. However, their respective contribution and specificity to the SMC and/or alveolar MYF lineages remain controversial. In addition, the contribution of mesenchymal cells undergoing active WNT signaling remains unknown. Using Fgf10CreERT2, Wt1CreERT2, Gli1CreERT2, and Axin2CreERT2 inducible driver lines in combination with a tdTomatoflox reporter line, the respective differentiation of each pool of labeled progenitor cells along the SMC and alveolar MYF lineages was quantified. The results revealed that while FGF10+ and WT1+ cells show a minor contribution to the SMC lineage, GLI1+ and AXIN2+ cells significantly contribute to both the SMC and alveolar MYF lineages, but with limited specificity. Lineage tracing using the Acta2-CreERT2 transgenic line showed that ACTA2+ cells labeled at embryonic day (E)11.5 do not expand significantly to give rise to new SMCs at E18.5. However, ACTA2+ cells labeled at E15.5 give rise to the majority (85%–97%) of the SMCs in the lung at E18.5 as well as alveolar MYF progenitors in the lung parenchyma. Fluorescence-activated cell sorting-based isolation of different subpopulations of ACTA2+ lineage-traced cells followed by gene arrays, identified transcriptomic signatures for alveolar MYF progenitors versus airway and vascular SMCs at E18.5. Our results establish a new transcriptional landscape for further experiments addressing the function of signaling pathways in the formation of different subpopulations of ACTA2+ cells. Stem Cells 2017;35:1566–1578

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    Targeting miR-34a/Pdgfra interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia

    Get PDF
    Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth characterized by arrested lung alveolarization, which generates lungs that are incompetent for effective gas exchange. We report here deregulated expression of miR-34a in a hyperoxia-based mouse model of BPD, where miR-34a expression was markedly increased in platelet-derived growth factor receptor (PDGFR)α-expressing myofibroblasts, a cell type critical for proper lung alveolarization. Global deletion of miR-34a; and inducible, conditional deletion of miR-34a in PDGFRα+ cells afforded partial protection to the developing lung against hyperoxia-induced perturbations to lung architecture. Pdgfra mRNA was identified as the relevant miR-34a target, and using a target site blocker in vivo, the miR-34a/Pdgfra interaction was validated as a causal actor in arrested lung development. An antimiR directed against miR-34a partially restored PDGFRα+ myofibroblast abundance and improved lung alveolarization in newborn mice in an experimental BPD model. We present here the first identification of a pathology-relevant microRNA/mRNA target interaction in aberrant lung alveolarization and highlight the translational potential of targeting the miR-34a/Pdgfra interaction to manage arrested lung development associated with preterm birth
    corecore