22 research outputs found

    Obesity-induced cognitive impairment in older adults: a microvascular perspective

    Get PDF
    Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed

    Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects

    Get PDF
    Aging-induced structural and functional alterations of the neurovascular unit lead to impairment of neurovascular coupling responses, dysregulation of cerebral blood flow, and increased neuroinflammation, all of which contribute importantly to the pathogenesis of age-related vascular cognitive impairment (VCI). There is increasing evidence showing that a decrease in NAD(+) availability with age plays a critical role in age-related neurovascular and cerebromicrovascular dysfunction. Our recent studies demonstrate that restoring cellular NAD(+) levels in aged mice rescues neurovascular function, increases cerebral blood flow, and improves performance on cognitive tasks. To determine the effects of restoring cellular NAD(+) levels on neurovascular gene expression profiles, 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD(+) intermediate, for 2 weeks. Transcriptome analysis of preparations enriched for cells of the neurovascular unit was performed by RNA-seq. Neurovascular gene expression signatures in NMN-treated aged mice were compared with those in untreated young and aged control mice. We identified 590 genes differentially expressed in the aged neurovascular unit, 204 of which are restored toward youthful expression levels by NMN treatment. The transcriptional footprint of NMN treatment indicates that increased NAD(+) levels promote SIRT1 activation in the neurovascular unit, as demonstrated by analysis of upstream regulators of differentially expressed genes as well as analysis of the expression of known SIRT1-dependent genes. Pathway analysis predicts that neurovascular protective effects of NMN are mediated by the induction of genes involved in mitochondrial rejuvenation, anti-inflammatory, and anti-apoptotic pathways. In conclusion, the recently demonstrated protective effects of NMN treatment on neurovascular function can be attributed to multifaceted sirtuin-mediated anti-aging changes in the neurovascular transcriptome. Our present findings taken together with the results of recent studies using mitochondria-targeted interventions suggest that mitochondrial rejuvenation is a critical mechanism to restore neurovascular health and improve cerebral blood flow in aging

    Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain

    Get PDF
    Age-related phenotypic changes of cerebromicrovascular endothelial cells lead to dysregulation of cerebral blood flow and blood-brain barrier disruption, promoting the pathogenesis of vascular cognitive impairment (VCI). In recent years, endothelial cell senescence has emerged as a potential mechanism contributing to microvascular pathologies opening the avenue to the therapeutic exploitation of senolytic drugs in preclinical studies. However, difficulties with the detection of senescent endothelial cells in wild type mouse models of aging hinder the assessment of the efficiency of senolytic treatments. To detect senescent endothelial cells in the aging mouse brain, we analyzed 4233 cells in fractions enriched for cerebromicrovascular endothelial cells and other cells associated with the neurovascular unit obtained from young (3-month-old) and aged (28-month-old) C57BL/6 mice. We define 13 transcriptomic cell types by deep, single-cell RNA sequencing. We match transcriptomic signatures of cellular senescence to endothelial cells identified on the basis of their gene expression profile. Our study demonstrates that with advanced aging, there is an increased ratio of senescent endothelial cells (similar to 10%) in the mouse cerebral microcirculation. We propose that our single-cell RNA sequencing-based method can be adapted to study the effect of aging on senescence in various brain cell types as well as to evaluate the efficiency of various senolytic regimens in multiple tissues

    Cerebral venous congestion exacerbates cerebral microhemorrhages in mice

    No full text
    Cerebral microhemorrhages (CMHs; microbleeds), which are small focal intracerebral hemorrhages, importantly contribute to the pathogenesis of cognitive decline and dementia in older adults. Although recently it has been increasingly recognized that the venous side of the cerebral circulation likely plays a fundamental role in the pathogenesis of a wide spectrum of cerebrovascular and brain disorders, its role in the pathogenesis of CMHs has never been studied. The present study was designed to experimentally test the hypothesis that venous congestion can exacerbate the genesis of CMHs. Increased cerebral venous pressure was induced by internal and external jugular vein ligation (JVL) in C57BL/6 mice in which systemic hypertension was induced by treatment with angiotensin II plus L-NAME. Histological analysis (diaminobenzidine staining) showed that mice with JVL developed multiple CMHs. CMHs in mice with JVL were often localized adjacent to veins and venules and their morphology was consistent with venous origin of the bleeds. In brains of mice with JVL, a higher total count of CMHs was observed compared to control mice. CMHs were distributed widely in the brain of mice with JVL, including the cortical gray matter, brain stem, the basal ganglia, subcortical white matter, cerebellum, and the hippocampi. In mice with JVL, there were more CMHs predominantly in cerebral cortex, brain stem, and cerebellum than in control mice. CMH burden, defined as total CMH volume, also significantly increased in mice with JVL. Thus, cerebral venous congestion can exacerbate CMHs. These observations have relevance to the pathogenesis of cognitive impairment associated with right heart failure as well as elevated cerebral venous pressure due to jugular venous reflux in older adults

    Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice

    No full text
    Cognitive impairment is one of the most common co-occurring chronic conditions among elderly heart failure patients (incidence: up to ~ 80%); however, the underlying mechanisms are not completely understood. It is hypothesized that in addition to decreased cardiac output, increases in central-and consequentially, cerebral-venous pressure (backward failure) also contribute significantly to the genesis of cognitive impairment. To test this hypothesis and elucidate the specific pathogenic role of venous congestion in the brain, we have established a novel model of increased cerebral venous pressure: mice with jugular vein ligation (JVL). To test the hypothesis that increased venous pressure in the brain contributes to the development of cognitive deficits by causing blood-brain barrier disruption, dysregulation of blood flow, and/or promoting neuroinflammation, in C57BL/6 mice, the internal and external jugular veins were ligated. Cognitive function (radial arm water maze), gait function (CatWalk), and motor coordination (rotarod) were tested post-JVL. Neurovascular coupling responses were assessed by measuring changes in cerebral blood flow in the whisker barrel cortex in response to contralateral whisker stimulation by laser speckle contrast imaging through a closed cranial window. Blood-brain barrier integrity (IgG extravasation) and microglia activation (Iba1 staining) were assessed in brain slices by immunohistochemistry. Neuroinflammation-related gene expression profile was assessed by a targeted qPCR array. After jugular vein ligation, mice exhibited impaired spatial learning and memory, altered motor coordination, and impaired gait function, mimicking important aspects of altered brain function observed in human heart failure patients. JVL did not alter neurovascular coupling responses. In the brains of mice with JVL, significant extravasation of IgG was detected, indicating blood-brain barrier disruption, which was associated with histological markers of neuroinflammation (increased presence of activated microglia) and a pro-inflammatory shift in gene expression profile. Thus, cerebral venous congestion per se can cause blood-brain barrier disruption and neuroinflammation, which likely contribute to the genesis of cognitive impairment. These findings have relevance to the pathogenesis of cognitive decline associated with heart failure as well as increased cerebal venous pressure due to increased jugular venous reflux in elderly human patients

    Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects

    Get PDF
    Aging-induced structural and functional alterations of the neurovascular unit lead to impairment of neurovascular coupling responses, dysregulation of cerebral blood flow, and increased neuroinflammation, all of which contribute importantly to the pathogenesis of age-related vascular cognitive impairment (VCI). There is increasing evidence showing that a decrease in NAD(+) availability with age plays a critical role in age-related neurovascular and cerebromicrovascular dysfunction. Our recent studies demonstrate that restoring cellular NAD(+) levels in aged mice rescues neurovascular function, increases cerebral blood flow, and improves performance on cognitive tasks. To determine the effects of restoring cellular NAD(+) levels on neurovascular gene expression profiles, 24-month-old C57BL/6 mice were treated with nicotinamide mononucleotide (NMN), a key NAD(+) intermediate, for 2 weeks. Transcriptome analysis of preparations enriched for cells of the neurovascular unit was performed by RNA-seq. Neurovascular gene expression signatures in NMN-treated aged mice were compared with those in untreated young and aged control mice. We identified 590 genes differentially expressed in the aged neurovascular unit, 204 of which are restored toward youthful expression levels by NMN treatment. The transcriptional footprint of NMN treatment indicates that increased NAD(+) levels promote SIRT1 activation in the neurovascular unit, as demonstrated by analysis of upstream regulators of differentially expressed genes as well as analysis of the expression of known SIRT1-dependent genes. Pathway analysis predicts that neurovascular protective effects of NMN are mediated by the induction of genes involved in mitochondrial rejuvenation, anti-inflammatory, and anti-apoptotic pathways. In conclusion, the recently demonstrated protective effects of NMN treatment on neurovascular function can be attributed to multifaceted sirtuin-mediated anti-aging changes in the neurovascular transcriptome. Our present findings taken together with the results of recent studies using mitochondria-targeted interventions suggest that mitochondrial rejuvenation is a critical mechanism to restore neurovascular health and improve cerebral blood flow in aging

    Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain

    Get PDF
    Age-related phenotypic changes of cerebromicrovascular endothelial cells lead to dysregulation of cerebral blood flow and blood-brain barrier disruption, promoting the pathogenesis of vascular cognitive impairment (VCI). In recent years, endothelial cell senescence has emerged as a potential mechanism contributing to microvascular pathologies opening the avenue to the therapeutic exploitation of senolytic drugs in preclinical studies. However, difficulties with the detection of senescent endothelial cells in wild type mouse models of aging hinder the assessment of the efficiency of senolytic treatments. To detect senescent endothelial cells in the aging mouse brain, we analyzed 4233 cells in fractions enriched for cerebromicrovascular endothelial cells and other cells associated with the neurovascular unit obtained from young (3-month-old) and aged (28-month-old) C57BL/6 mice. We define 13 transcriptomic cell types by deep, single-cell RNA sequencing. We match transcriptomic signatures of cellular senescence to endothelial cells identified on the basis of their gene expression profile. Our study demonstrates that with advanced aging, there is an increased ratio of senescent endothelial cells (similar to 10%) in the mouse cerebral microcirculation. We propose that our single-cell RNA sequencing-based method can be adapted to study the effect of aging on senescence in various brain cell types as well as to evaluate the efficiency of various senolytic regimens in multiple tissues

    Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice

    No full text
    Moment-to-moment adjustment of regional cerebral blood flow to neuronal activity via neurovascular coupling (NVC or "functional hyperemia") has a critical role in maintenance of healthy cognitive function. Aging-induced impairment of NVC responses importantly contributes to age-related cognitive decline. Advanced aging is associated with increased prevalence of senescent cells in the cerebral microcirculation, but their role in impaired NVC responses remains unexplored. The present study was designed to test the hypothesis that a validated senolytic treatment can improve NVC responses and cognitive performance in aged mice. To achieve this goal, aged (24-month-old) C57BL/6 mice were treated with ABT263/Navitoclax, a potent senolytic agent known to eliminate senescent cells in the aged mouse brain. Mice were behaviorally evaluated (radial arms water maze) and NVC was assessed by measuring CBF responses (laser speckle contrast imaging) in the somatosensory whisker barrel cortex evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. ABT263/Navitoclax treatment improved NVC response, which was associated with significantly improved hippocampal-encoded functions of learning and memory. ABT263/Navitoclax treatment did not significantly affect endothelium-dependent acetylcholine-induced relaxation of aorta rings. Thus, increased presence of senescent cells in the aged brain likely contributes to age-related neurovascular uncoupling, exacerbating cognitive decline. The neurovascular protective effects of ABT263/Navitoclax treatment highlight the preventive and therapeutic potential of senolytic treatments (as monotherapy or as part of combination treatment regimens) as effective interventions in patients at risk for vascular cognitive impairment (VCI)
    corecore