325 research outputs found

    Wasm-iCARE: a portable and privacy-preserving web module to build, validate, and apply absolute risk models

    Full text link
    Objective: Absolute risk models estimate an individual's future disease risk over a specified time interval. Applications utilizing server-side risk tooling, such as the R-based iCARE (R-iCARE), to build, validate, and apply absolute risk models, face serious limitations in portability and privacy due to their need for circulating user data in remote servers for operation. Our objective was to overcome these limitations. Materials and Methods: We refactored R-iCARE into a Python package (Py-iCARE) then compiled it to WebAssembly (Wasm-iCARE): a portable web module, which operates entirely within the privacy of the user's device. Results: We showcase the portability and privacy of Wasm-iCARE through two applications: for researchers to statistically validate risk models, and to deliver them to end-users. Both applications run entirely on the client-side, requiring no downloads or installations, and keeps user data on-device during risk calculation. Conclusions: Wasm-iCARE fosters accessible and privacy-preserving risk tools, accelerating their validation and delivery.Comment: 10 pages, 2 figure

    Disruption of the Cr2 Locus Results in a Reduction in B-1a Cells and in an Impaired B Cell Response to T-Dependent Antigen

    Get PDF
    AbstractCovalent attachment of activated products of the third component of complement to antigen enhances its immunogenicity, but the mechanism is not clear. This effect is mediated by specific receptors, mCR1 (CD35) and mCR2 (CD21), expressed primarily on B cells and follicular dendritic cells in mice. To dissect the role of mCR1 and mCR2 in the humoral response, we have disrupted the Cr2 locus to generate mice deficient in both receptors. The deficient mice (Cr2−/−) were found to have a reduction in the CD5+ population of peritoneal B-1 cells, although their serum IgM levels were within the range of normal mice. Moreover, Cr2−/− mice had a severe defect in their humoral response to T-dependent antigens that was characterized by a reduction in serum antibody titers and in the number and size of germinal centers within splenic follicles. Reconstitution of the deficient mice with bone marrow from MHC-matched Cr2+/+ donors corrected the defect, demonstrating that the defect was due to B cells themselves. These results indicate an obligatory role of B cell complement receptors in responses of the B cells to protein antigens

    Associations of fecal microbial profiles with breast cancer and non-malignant breast disease in the Ghana Breast Health Study

    Get PDF
    The gut microbiota may play a role in breast cancer etiology by regulating hormonal, metabolic and immunologic pathways. We investigated associations of fecal bacteria with breast cancer and nonmalignant breast disease in a case-control study conducted in Ghana, a country with rising breast cancer incidence and mortality. To do this, we sequenced the V4 region of the 16S rRNA gene to characterize bacteria in fecal samples collected at the time of breast biopsy (N = 379 breast cancer cases, N = 102 nonmalignant breast disease cases, N = 414 population-based controls). We estimated associations of alpha diversity (observed amplicon sequence variants [ASVs], Shannon index, and Faith's phylogenetic diversity), beta diversity (Bray-Curtis and unweighted/weighted UniFrac distance), and the presence and relative abundance of select taxa with breast cancer and nonmalignant breast disease using multivariable unconditional polytomous logistic regression. All alpha diversity metrics were strongly, inversely associated with odds of breast cancer and for those in the highest relative to lowest tertile of observed ASVs, the odds ratio (95% confidence interval) was 0.21 (0.13-0.36; Ptrend < .001). Alpha diversity associations were similar for nonmalignant breast disease and breast cancer grade/molecular subtype. All beta diversity distance matrices and multiple taxa with possible estrogen-conjugating and immune-related functions were strongly associated with breast cancer (all Ps < .001). There were no statistically significant differences between breast cancer and nonmalignant breast disease cases in any microbiota metric. In conclusion, fecal bacterial characteristics were strongly and similarly associated with breast cancer and nonmalignant breast disease. Our findings provide novel insight into potential microbially-mediated mechanisms of breast disease

    Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women

    Get PDF
    Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P \u3c 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants

    Two truncating variants in FANCC and breast cancer risk

    Get PDF
    Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44�1.33, p=0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are diferences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants

    The oral microbiome and breast cancer and nonmalignant breast disease, and its relationship with the fecal microbiome in the Ghana Breast Health Study

    Get PDF
    The oral microbiome, like the fecal microbiome, may be related to breast cancer risk. Therefore, we investigated whether the oral microbiome was associated with breast cancer and nonmalignant breast disease, and its relationship with the fecal microbiome in a case-control study in Ghana. A total of 881 women were included (369 breast cancers, 93 nonmalignant cases and 419 population-based controls). The V4 region of the 16S rRNA gene was sequenced from oral and fecal samples. Alpha-diversity (observed amplicon sequence variants [ASVs], Shannon index and Faiths Phylogenetic Diversity) and beta-diversity (Bray-Curtis, Jaccard and weighted and unweighted UniFrac) metrics were computed. MiRKAT and logistic regression models were used to investigate the case-control associations. Oral sample alpha-diversity was inversely associated with breast cancer and nonmalignant breast disease with odds ratios (95% CIs) per every 10 observed ASVs of 0.86 (0.83-0.89) and 0.79 (0.73-0.85), respectively, compared to controls. Beta-diversity was also associated with breast cancer and nonmalignant breast disease compared to controls (P ≤ .001). The relative abundances of Porphyromonas and Fusobacterium were lower for breast cancer cases compared to controls. Alpha-diversity and presence/relative abundance of specific genera from the oral and fecal microbiome were strongly correlated among breast cancer cases, but weakly correlated among controls. Particularly, the relative abundance of oral Porphyromonas was strongly, inversely correlated with fecal Bacteroides among breast cancer cases (r = -.37, P ≤ .001). Many oral microbial metrics were strongly associated with breast cancer and nonmalignant breast disease, and strongly correlated with fecal microbiome among breast cancer cases, but not controls

    Associations of Circulating Estrogens and Estrogen Metabolites with Fecal and Oral Microbiome in Postmenopausal Women in the Ghana Breast Health Study

    Get PDF
    ABSTRACT The human fecal and oral microbiome may play a role in the etiology of breast cancer through modulation of endogenous estrogen metabolism. This study aimed to investigate associations of circulating estrogens and estrogen metabolites with the fecal and oral microbiome in postmenopausal African women. A total of 117 women with fecal (N = 110) and oral (N = 114) microbiome data measured by 16S rRNA gene sequencing, and estrogens and estrogen metabolites data measured by liquid chromatography tandem mass spectrometry were included. The outcomes were measures of the microbiome and the independent variables were the estrogens and estrogen metabolites. Estrogens and estrogen metabolites were associated with the fecal microbial Shannon index (global P < 0.01). In particular, higher levels of estrone (β = 0.36, P = 0.03), 2-hydroxyestradiol (β = 0.30, P = 0.02), 4-methoxyestrone (β = 0.51, P = 0.01), and estriol (β = 0.36, P = 0.04) were associated with higher levels of the Shannon index, while 16alpha-hydroxyestrone (β = −0.57, P < 0.01) was inversely associated with the Shannon index as indicated by linear regression. Conjugated 2-methoxyestrone was associated with oral microbial unweighted UniFrac as indicated by MiRKAT (P < 0.01) and PERMANOVA, where conjugated 2-methoxyestrone explained 2.67% of the oral microbial variability, but no other estrogens or estrogen metabolites were associated with any other beta diversity measures. The presence and abundance of multiple fecal and oral genera, such as fecal genera from families Lachnospiraceae and Ruminococcaceae, were associated with several estrogens and estrogen metabolites as indicated by zero-inflated negative binomial regression. Overall, we found several associations of specific estrogens and estrogen metabolites and the fecal and oral microbiome. IMPORTANCE Several epidemiologic studies have found associations of urinary estrogens and estrogen metabolites with the fecal microbiome. However, urinary estrogen concentrations are not strongly correlated with serum estrogens, a known risk factor for breast cancer. To better understand whether the human fecal and oral microbiome were associated with breast cancer risk via the regulation of estrogen metabolism, we conducted this study to investigate the associations of circulating estrogens and estrogen metabolites with the fecal and oral microbiome in postmenopausal African women. We found several associations of parent estrogens and several estrogen metabolites with the microbial communities, and multiple individual associations of estrogens and estrogen metabolites with the presence and abundance of multiple fecal and oral genera, such as fecal genera from families Lachnospiraceae and Ruminococcaceae, which have estrogen metabolizing properties. Future large, longitudinal studies to investigate the dynamic changes of the fecal and oral microbiome and estrogen relationship are needed
    • …
    corecore