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ARTICLE

Cross-ancestry GWAS meta-analysis identifies six
breast cancer loci in African and European ancestry
women
Babatunde Adedokun1, Zhaohui Du2, Guimin Gao 3, Thomas U. Ahearn 4, Kathryn L. Lunetta 5,

Gary Zirpoli6, Jonine Figueroa 7, Esther M. John8, Leslie Bernstein 9, Wei Zheng 10, Jennifer J. Hu11,

Regina G. Ziegler 4, Sarah Nyante 12, Elisa V. Bandera13, Sue A. Ingles2, Michael F. Press 14,

Sandra L. Deming-Halverson10, Jorge L. Rodriguez-Gil 15, Song Yao 16, Temidayo O. Ogundiran17,

Oladosu Ojengbede18, William Blot10, Melissa A. Troester19, Katherine L. Nathanson 20, Anselm Hennis21,22,

Barbara Nemesure22, Stefan Ambs 23, Peter N. Fiorica3, Lara E. Sucheston-Campbell24, Jeannette T. Bensen19,

Lawrence H. Kushi 25, Gabriela Torres-Mejia26, Donglei Hu 27, Laura Fejerman 27, Manjeet K. Bolla28,

Joe Dennis 28, Alison M. Dunning 29, Douglas F. Easton 28,29, Kyriaki Michailidou30,

Paul D. P. Pharoah 28,29, Qin Wang28, Dale P. Sandler 31, Jack A. Taylor 31, Katie M. O’Brien31,

Cari M. Kitahara32, Adeyinka G. Falusi33, Chinedum Babalola 34, Joel Yarney35, Baffour Awuah36,

Beatrice Addai-Wiafe37, The GBHS Study Team, Stephen J. Chanock 4, Andrew F. Olshan19,

Christine B. Ambrosone 16, David V. Conti2, Elad Ziv27, Olufunmilayo I. Olopade 1,

Montserrat Garcia-Closas 4, Julie R. Palmer6, Christopher A. Haiman 2✉ & Dezheng Huo 1,3✉

Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first

identify variants that are associated with breast cancer at P < 0.05 from African ancestry

GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European

ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Asso-

ciation Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3,

5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-

negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single

nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and

SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-

168G16.2. Here we present risk loci with consistent direction of associations in African and

European descendants. The study suggests that replication across multiple ancestry popu-

lations can help improve the understanding of breast cancer genetics and identify causal

variants.

https://doi.org/10.1038/s41467-021-24327-x OPEN

A full list of author affiliations appears at the end of the paper.
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Breast cancer is the most common cancer in women
worldwide and accounted for 2.1 million new cases and
627,000 deaths in 20181. Studies have shown a significant

contribution of genetic factors to breast cancer risk2,3, yet the
landscape of this contribution has not been fully elucidated.
Mutations in high- and moderate-penetrance genes confer rela-
tively high risks of breast cancer but are rare in the population
and account for <5–10% of cases4. Genome-wide association
studies (GWAS) have been successful in identifying common
low-penetrance genetic variation and approximately 200 risk loci
have now been identified5–7. The risk loci so far identified have
provided clues to elucidating breast cancer tumorigenesis through
previously unknown mechanisms. Additionally, when combined
into risk scores, these polymorphisms can be used for breast
cancer risk prediction8.

Despite the usefulness of GWAS, the majority of the GWAS
studies have been performed among European ancestry
populations9–13, it is unclear whether the same genetic risk fac-
tors are also important in other populations, which may limit the
applicability of the findings to other groups14. The earliest GWAS
conducted in African ancestry populations identified genetic
variants at 5p15.33 (TERT-CLPTM1L) associated with estrogen
receptor (ER) negative breast cancer15. A larger analysis of
African ancestry individuals which included several consortia
identified a SNP at 3q26.21 also associated with ER-negative
breast cancer16. Some common susceptibility loci are shared
across populations, and the shared disease-associated variants are
more likely to be causal6,9,14.

Here we present, using a cross-ancestry GWAS approach in
248,000 women, genetic risk variants at 1p13.3, 5q31.1, 15q24,
and 15q26.3 for overall breast cancer, and at 1q41 and 7q11.23 for
ER-negative disease. The consistency of the directions of the risk
for these loci in African and European samples increases the
likelihood of their being causal variants.

Results
We discovered six loci containing seven SNPs significantly
associated with breast cancer at P < 5 × 10−8 on cross-ancestry
meta-analysis, with odds ratios (OR) ranging from 0.95 to 1.05
(Tables 1, 2; Supplementary Figs. 1, 2). Five SNPs were asso-
ciated with overall breast cancer risk (rs17024628 at 1p13.3,
rs2522057 at 5q31.1, rs1869959 at 15q24.1, rs60381548 at
15q24.2, rs181337095 at 15q26.3) and two were associated with
ER-negative breast cancer (rs67931591 at 1q14 and rs1637365
at 7q11.2). The two SNPs at the 15q24 region were about 582 kb
apart and independently associated with breast cancer risk.
Four SNPs were within genes (rs67931591 in KCNK2,
rs2522057 in C5orf56, rs1869959 in SCAMP2, and rs60381548
in SIN3A) and the others were in intergenic regions. The
direction of the associations was consistent for the pooled
African and European estimates. The estimates for overall and
ER-negative breast cancer were generally consistent across the
five contributing studies of African ancestry participants
(Supplementary Table 2) and the BCAC European datasets
(Supplementary Table 3).

Conditional analysis revealed three additional independent
signals significant at p < 10−4 at the 1p13.3 locus (rs116363925,
rs114351980, and 1:109969874:C:T), two independent signals at
15q24 (rs113939578, rs12917507), and one each at 5q31.1
(5:132149322:G:GGCCGCCGCC) and 15q26.3 (rs117793215) for
overall breast cancer risk. Another independent SNP at 1q41 that
was associated with ER-negative breast cancer was rs5780828
(Table 3).

Concerning pleiotropy, none of the SNPs identified above have
been reported in previous GWAS associations at genome-wide T

ab
le

1
N
ov

el
br
ea

st
ca
nc
er

ri
sk

lo
ci

id
en

ti
fi
ed

by
cr
os
s-
an

ce
st
ry

m
et
a-
an

al
ys
is

of
A
fr
ic
an

an
d
Eu

ro
pe

an
po

pu
la
ti
on

s.

A
fr
ic
an

-s
pe

ci
fi
c
m
et
a-
an

al
ys
is

Eu
ro
pe

an
-s
pe

ci
fi
c
m
et
a-
an

al
ys
is

C
om

bi
ne

d
A
fr
ic
an

an
d
Eu

ro
pe

an
m
et
a-
an

al
ys
is
a

S
N
P

C
hr

P
os
it
io
n

T
es
t

O
th
er

Lo
cu
s

W
it
hi
n
ge

ne
T
A
F

O
R
(9
5
%

C
I)

P
va
lu
e

T
A
F

O
R
(9
5
%

C
I)

P
va
lu
e

T
A
F

O
R
(9
5
%

C
I)

P
va
lu
e

O
ve
ra
ll

rs
17
0
24

6
29

1
11
0
,1
79

,7
56

T
C

1p
13
.3

N
o

0
.1
3

0
.8
8
(0

.8
3–
0
.9
5)

5.
2E

−
0
4

0
.1
6

0
.9
6
(0

.9
4
–0

.9
8
)

1.
2E

−
0
6

0
.1
6

0
.9
5
(0

.9
4
–0

.9
7)

3.
0
E−

0
8

rs
6
79

31
59

1
1

21
5,
33

0
,2
9
2

G
G
C
T
G
A
G
G
-

C
A
G
G
A
G
A

1q
4
1

K
C
N
K
2

0
.2
8

0
.9
5
(0

.9
0
–1
.0
0
)

0
.0
34

0
.6
8

0
.9
8
(0

.9
6
–0

.9
9
)

3.
9
E−

0
4

0
.6
6

0
.9
7
(0

.9
6
–0

.9
9
)

7.
4
E−

0
5

rs
25

22
0
57

5
13
1,
8
0
1,
9
4
7

C
G

5q
31
.1

C
5o

rf
56

0
.8
6

0
.9
2
(0

.8
6
–0

.9
8
)

0
.0
0
8
4

0
.5
9

0
.9
7
(0

.9
6
–0

.9
8
)

9
.3
E−

0
8

0
.6
0

0
.9
7
(0

.9
5–
0
.9
8
)

1.
1E
−
0
8

rs
16
37

36
5

7
74

,3
59

,3
58

T
C

7q
11
.2
3

N
o

0
.6
2

1.
0
6
(1
.0
1–
1.
12
)

0
.0
24

0
.2
8

1.
0
4
(1
.0
2–
1.
0
5)

3.
3E

−
0
6

0
.3
1

1.
0
4
(1
.0
2–
1.
0
5)

3.
6
E−

0
7

rs
18
6
9
9
59

15
75

,1
4
7,
33

2
A

C
15
q2

4
.1

SC
A
M
P2

0
.4
0

0
.9
5
(0

.9
1–
1.
0
0
)

0
.0
4
3

0
.3
0

0
.9
7
(0

.9
5–
0
.9
8
)

3.
6
E−

0
7

0
.3
0

0
.9
6
(0

.9
5–
0
.9
8
)

4
.6
E−

0
8

rs
6
0
38

15
4
8

15
75

,7
28

,4
74

C
A

C
15
q2

4
.2

SI
N
3A

0
.5
0

0
.9
3
(0

.8
9
–0

.9
7)

0
.0
0
16

0
.2
5

0
.9
6
(0

.9
5–
0
.9
8
)

4
.0
E−

0
7

0
.2
7

0
.9
6
(0

.9
5–
0
.9
7)

6
.6
E−

0
9

rs
18
13
37

0
9
5

15
10
0
,9
0
7,
0
9
4

A
G

15
q2

6
.3

N
o

0
.6
9

1.
0
6
(1
.0
1–
1.
12
)

0
.0
17

0
.8
7

1.
0
5
(1
.0
3–
1.
0
7)

3.
4
E−

0
7

0
.8
4

1.
0
5
(1
.0
4
–1
.0
7)

1.
8
E−

0
8

ER
ne
ga
tiv
e

rs
17
0
24

6
29

1
11
0
,1
79

,7
56

T
C

1p
13
.3

N
o

0
.1
3

0
.8
3
(0

.7
4
–0

.9
2)

0
.0
0
0
6
4

0
.1
6

0
.9
6
(0

.9
3–
0
.9
9
)

0
.0
20

0
.1
6

0
.9
5
(0

.9
3–
0
.9
8
)

0
.0
0
14

rs
6
79

31
59

1
1

21
5,
33

0
,2
9
2

G
G
C
T
G
A
G
G
-

C
A
G
G
A
G
A

1q
4
1

K
C
N
K
2

0
.2
9

0
.9
2
(0

.8
5–
0
.9
9
)

0
.0
24

0
.6
8

0
.9
4
(0

.9
2 –
0
.9
6
)

4
.6
E−

0
7

0
.6
5

0
.9
4
(0

.9
2–
0
.9
6
)

4
.3
E−

0
8

rs
25

22
0
57

5
13
1,
8
0
1,
9
4
7

C
G

5q
31
.1

C
5o

rf
56

0
.8
6

0
.9
3
(0

.8
5–
1.
0
3)

0
.1
8

0
.5
9

0
.9
9
(0

.9
6
–1
.0
1)

0
.2
2

0
.6
0

0
.9
8
(0

.9
6
–1
.0
1)

0
.1
4

rs
16
37

36
5

7
74

,3
59

,3
58

T
C

7q
11
.2
3

N
o

0
.6
1

1.
15

(1
.0
6
–1
.2
5)

0
.0
0
0
6
9

0
.2
8

1.
0
7
(1
.0
4
–1
.1
0
)

9
.0
E−

0
7

0
.3
2

1.
0
8
(1
.0
5–
1.
11
)

1.
0
E−

0
8

rs
18
6
9
9
59

15
75

,1
4
7,
33

2
A

C
15
q2

4
.1

SC
A
M
P2

0
.4
1

0
.9
6
(0

.8
9
–1
.0
3)

0
.2
2

0
.3
0

0
.9
7
(0

.9
4
–0

.9
9
)

0
.0
0
50

0
.3
1

0
.9
6
(0

.9
4
–0

.9
9
)

0
.0
0
22

rs
6
0
38

15
4
8

15
75

,7
28

,4
74

C
A

C
15
q2

4
.2

SI
N
3A

0
.5
1

0
.9
9
(0

.9
2–
1.
0
6
)

0
.7
8

0
.2
5

0
.9
5
(0

.9
2–
0
.9
7)

8
.6
E−

0
5

0
.2
8

0
.9
5
(0

.9
3–
0
.9
8
)

1.
7E

−
0
4

rs
18
13
37

0
9
5

15
10
0
,9
0
7,
0
9
4

A
G

15
q2

6
.3

N
o

0
.6
9

1.
0
7
(0

.9
9
–1
.1
6
)

0
.0
6
7

0
.8
7

1.
0
6
(1
.0
2–
1.
10
)

0
.0
0
16

0
.8
3

1.
0
6
(1
.0
3–
1.
10
)

2.
9
E−

0
4

TA
F
T
es
t
al
le
le

fr
eq

ue
nc
y,

SN
P
si
ng

le
nu

cl
eo

tid
e
po

ly
m
or
ph

is
m
,O

R
od

ds
ra
tio

,
C
I
co
nfi

de
nc
e
in
te
rv
al
s.

a T
es
t
fo
r
he

te
ro
ge
ne

ity
ac
ro
ss

st
ud

ie
s
w
as

st
at
is
tic

al
ly

si
gn

ifi
ca
nt

on
ly

fo
r
rs
16
37

36
5
an
d
ER

-n
eg
at
iv
e
br
ea
st

ca
nc
er

(P
-f
or
-h
et
er
og

en
ei
ty
=
0
.0
25

).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24327-x

2 NATURE COMMUNICATIONS |         (2021) 12:4198 | https://doi.org/10.1038/s41467-021-24327-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


significance with cancers. Associations with mosquito bite size
and asthma had been reported for rs2522057 and SNPs in LD
with this lead SNP. For the 15q24 region, associations with car-
diovascular phenotypes have been previously reported for
rs1869959 while body height, glomerular filtration rate, and type
2 diabetes have been associated with rs60381548 and SNPs highly
correlated with this lead SNP (Supplementary Table 4).

The eQTL analysis of breast tumors revealed significant asso-
ciations in four loci: 1p13.3, 5q31, 15q24.1, and 15q24.2 (Sup-
plementary Table 5A). There were significant associations (P <
10−6) between the protective allele of rs17024629 (T allele) at
1q13.3 and increased expression of GSTM1, GSTM2, and GSTM4,
which are located 19 kb, 31 kb, and 51 kb downstream of the SNP.
At 5q31, the top SNP rs2522057, located 15 kb downstream of
IRF1, was most significantly associated with the gene’s expression
levels. At 15q24.1, rs1869959, located 35 kb upstream of MPI and
12 kb upstream of ULK3, was significantly associated with the
expression of these two genes. The other top SNP at the 15q24
locus, rs60381548, located intron of SIN3A, 30 kb downstream of
PTPN9, 162 kb downstream of SNUPN, and 212 kb upstream of
SNX33 was correlated with all four genes. The 1q41 locus revealed
a significant association between rs67931591 and PTPN14. The
SNP at 7q11.23 was significantly correlated with STAG3L2, a
pseudogene. Previous published report on normal breast tissues
from the GTEx revealed associations between rs2522057 and the
SLC22A5 gene, and between rs1869959 and the ULK3 gene
(Supplementary Table 5B).

Functional annotation analyses pointed out relationships with
genomic functional biofeatures for rs2522057, rs17024629,
rs1869959, and rs60381548 or SNPs in strong LD with these top
SNPs in breast tissue-originated cell lines (Supplementary
Tables 6, 7A, 7B). Active enhancer and promoter states were
found for SNPs in strong LD with rs2522057 (rs2188962,
rs4705950, rs4705950, rs72797306, rs11741255) using the 25-state
chromatin model. Additional associations were found with his-
tone modifications. These included: H3K4me1 and H3K27ac
enhancer peaks for: rs2522057 and other SNPs in strong LD
(rs2188962, rs17622378, rs12521868, rs146604341, rs11951091,
rs6866614, rs4705950, rs72797303, rs2706396, rs2522052,
rs2706403, rs2706336, rs72797306, rs2248116, rs11741255); those
in strong LD with rs17024629 (rs538388, rs560674, rs568686,
rs669426, rs3850616, rs17024628); a SNP in strong LD with
rs1869959 (rs7180432); and for the top SNP rs60381548.
H3K4me3 and H3K9ac promoter peaks were found for:
rs2522057 and other SNPs in strong LD (rs12515180, rs11951091,
rs72797306); SNPs in LD with rs17024629 (rs538388, rs669426,
rs3850616); rs1869959 and other SNPs in strong LD (rs4886613,
rs936230).

We evaluated the consistency of the association of the identi-
fied loci in Latinos, and found the effect and direction of the
association were consistent in 8 out of 11 evaluated variants
(Supplementary Table 8). However, none of these consistent
variants was statistically significant at p < 0.05 in the Latino study
of 2385 cases and 6416 controls.

Discussion
We found seven variants associated with breast cancer risk
among women of African ancestry that may contribute to better
prediction of breast cancer risk and provide further insights into
mechanisms of breast cancer carcinogenesis. Although the dis-
covery of the loci is largely driven by effects in European ancestry
populations, observation of risk loci in multiple ancestral popu-
lations lends credence to the chances of those variants being
causal. We designed our current approach of cross-ancestry meta-
analysis to uncover genetic variants shared across ancestry.T
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The SNPs identified in this study lie in regions that are close to
genes that have been previously implicated in cancer. Interest-
ingly we found three variants located within the introns of genes.
One of the variants, rs67931591 was found in KCNK2 (also
known as TREK1), which encodes the protein potassium channel
subfamily K member 2, a member of the two-pore-domain
background potassium channel family. Potassium channels are
known to play a role in cancer and studies using TCGA data have
shown associations with DNA methylation in the KCNK genes
and triple negative breast cancer. Additionally, overexpression of
KCNK5, KCNK9, and KCNK12 and under-expression of KCNK6
and KCNK15 were associated with triple negative breast cancer17.
Other studies investigated expression of KCNK2 gene as potential
prognostic markers. For example, Innamaa et al.18 found
increased KCNK2 expression in human ovaries and a role in cell
proliferation and apoptosis for KCNK2 modulators in ovarian
cancer cell lines. Li et al.19 found differential expression of
KCNK2, KCNK15 and KCNK17 in liver cancer cells compared to
healthy tissue. KCNK2 has also been reported in amplified
regions in a genome-wide scan of chromosomal alterations in
esophageal squamous cell carcinoma20.

We found two independent SNPs at the 15q24 locus at about
582 kb apart (rs1869959 at 15q24.1 in the SCAMP2 intron and
rs60381548 at 15q24.2 in the SIN3A gene). The SIN3A gene was
associated with rs60381548 in the eQTL analysis of breast
tumor in the present study. Switch-independent 3 family A
(SIN3A) is a transcriptional regulator, that along with its
paralog and corepressor play important roles in normal breast
development, cancer and metastasis21–23. Furthermore, SIN3A
mediates STAT3 transcriptional repressor activity24 and along
with genes involved in histone modification such as HDAC and
Lysine specific demethylase (LSD), inhibits several cancer genes
including CASP7, TGFB2, CDKN1A, HIF1A, TERT and
MDM225. Studies have shown key roles for SIN3A in breast
cancer including sensitivity to chemotherapy25 and breast
cancer progression26,27.

The other SNP at 15q24, rs1869959, is located in the intron of
the SCAMP2 gene that codes for secretory carrier associated
membrane protein 2 that functions as carriers to the cell surface
in post-golgi recycling pathways28. The recent GTEx project pilot
study found significant associations between the SNP and
SCAMP2 in esophageal mucosa, ULK3 in breast mammary tissue,
adipose, whole blood, and lung tissue29,30. We also found that
rs1869959 was associated the expression of ULK3 in breast tumor.
ULK3 is a serine threonine kinase that activates GLI2, a key
component of the Hedgehog signaling pathway, and implicated in
many cancers31,32.

Similarly, the C5orf56 gene harboring the rs2522057 SNP
returned no interesting associations with cancer. However, nearby
genes in the 5q31 locus included RAD50, that codes for a DNA
repair protein, a part of the MRE11-RAD50-NBS1 complex33.
Other nearby genes include SLC22A5 solute carrier family 22
member 5 encoding the OCTN2 (organic cation transporter
protein), and IRF1 that encodes interferon regulatory factor 1.
SLC22A5 is an estrogen-dependent gene whose expression is
associated with ER status in breast cancer cell lines and tissue
specimens34. Significantly decreased levels of SLC22A5 have been
reported in colorectal cancer tissues compared to normal tissues
in eQTL studies35. Moreover, eQTL studies report associations
between rs2522057 and gene expression in several tissues
including breast mammary tissue, lymphocytes, esophageal
mucosa, lung, skeletal muscle, skin, thyroid and whole blood29,30.
We found an association between rs2522057 and IRF1 expression
levels in the eQTL analysis of breast cancer in this study lending
support to the likelihood of involvement of the IRF1 gene in the
mechanism of the SNP on breast cancer carcinogenesis.T
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Additionally, IRF1 has been shown to have tumor suppressor
functions in breast cancer through its inhibition of NF-kB36 and
CASP8 activation and induction of apoptosis37.

The majority of GWAS-identified SNPs were located in non-
coding regions of the genome, and three loci in the present study
were found in intergenic regions. The closest gene to rs17024629
is AMPD2 (high adenosine monophosphate deaminase 2) and has
recently been shown to predict worse outcomes in undiffer-
entiated pleomorphic sarcoma38. Earlier studies39 found high
expression levels of AMPD2 in hepatocellular carcinoma, though
the levels did not differ substantially from those in the non-
tumorous organ. It is noteworthy that our eQTL analysis did not
find a significant association with AMPD2 expression. The car-
cinogen metabolism genes, GSTM1, GSTM2, and GSTM4 are also
located in this region and our eQTL analysis of breast tumor
revealed highly significant associations between rs17024629 and
these genes. The GSTM1 null genotype has been associated with
several cancers including cancers of the colorectum, oral cavity,
lung, cervix, and stomach40–47. In eQTL studies, GSTM4 was
significantly associated with gene expression in several tissues
including the aorta, lungs, tibia nerve and whole blood29,30.

The rs1637365 SNP at the 7q11.23 locus is near the CASTOR2
gene (cytosolic arginine sensor for MTORC1 protein, also known
as GATSL1, GATS-like protein 1). The CASTOR proteins are
arginine sensors that function as negative regulators of the
TORC1 signaling pathway, an often dysregulated pathway in
human cancer, through the GATOR complex, inhibiting
mTORC148,49. The rs181337095 SNP is located 6 kb 5′ of RP11-
168G16.2, an antisense DNA.

A potential limitation of this study is the different genotyping
platforms used by the different consortia. However, stringent
QC measures pre- and post-imputation were carried out.
Additionally, the meta-analysis did not reveal significant het-
erogeneity across studies. Secondly, the sample size for ER-
negative breast cancer cases was relatively small, thus reducing
the precision of the estimates and providing less power for
detecting risk loci. The third limitation is related to the addi-
tional SNPs identified at the same loci with the index SNPs
from the conditional regression analysis. The regression pro-
cedures were based on a liberal p value cutoff of 10−4, and the
chance that some of the identified SNPs could be spurious
findings cannot be ruled out. Another noteworthy point is that
identification of genetic variants in GWAS is just the first step
of the discovery of true causal variants and genes associated
with breast cancer. Further studies are needed, including
in vitro and in vivo functional studies to elucidate the
mechanisms by which identified putative causal variants
are acting and identify the targeted genes, Finally, although the
direction and strength of the associations were consistent
between African and European populations, and mostly con-
sistent with Latino populations, we could not find statistically
significant replication of the identified variants, which are likely
due to the modest sample sizes of the Latino study.

Our study found six loci that could provide further insights
into pathways for breast cancer carcinogenesis. The genetic var-
iants that shared across ancestry populations makes them possible
causal variants. Functional studies on these loci are desirable to
identify causal variants and elucidate the mechanisms of breast
cancer carcinogenesis. In addition, future studies can evaluate
these variants for breast cancer risk prediction, particularly in
African ancestry populations.

Methods
Study population. Data for this study were obtained from four consortia of
African ancestry populations (ROOT, AMBER, AABC, and BCAC-African

ancestry)16 and the Ghana Breast Health Study (GBHS)50,51, with a combined
sample size of 19434 participants including 9241 cases and 10193 controls (Sup-
plementary Table 1). Estimates from these studies were meta-analysed to generate
pooled African ancestry estimates of breast cancer risk. Additionally, we used
summary estimates (odds ratios, ORs) of breast cancer from European ancestry
BCAC datasets (GWAS, iCOGs and OncoArray) with a combined sample size of
228,951 (122,977 cases and 105,974 controls)6.

Genotyping and quality control. Genotyping and quality control (QC) procedures
have been described in detail for the three consortia16 and the BCAC European
ancestry data6. The AABC was genotyped using the Illumina Human 1M-Duo
BeadChip. After QC, a total of 3007 cases (1518 ER-positive, 987 ER-negative) and
2720 controls remained in the analysis52. Genotyping in the ROOT consortium
was done using Illumina HumanOmni 2.5-8v1 array and 1657 cases (374 ER-
positive, 403 ER-negative) and 2029 controls passed QC. In the BCAC-African
ancestry consortium, genotyping was done using the Illumina OncoArray (260K
GWAS backbone) and after removing overlapped samples between OncoArray
with AABC, AMBER and ROOT and samples failed in QC, a total of 2271 cases
(1130 ER-positive, 613 ER-negative) and 1406 controls remained for analysis. The
Illumina MEGA array was used for genotyping in the AMBER consortium, and
1407 cases (952 ER-positive, 385 ER-negative) and 2408 controls remained in
analysis passed QC. In the GBHS, Illumina Global Screening Array was used for
genotyping, and 899 cases (296 ER-positive, 277 ER-negative) and 1630 controls
were included in analysis. Imputation for all studies was done using the cosmo-
politan reference panel in the 1000 Genomes Project (Phase 3 release).

In addition, we examined the association between the identified SNPs of interest
and breast cancer risk in a GWAS of Latinos (2385 cases and 6416 controls).
Details of the genotyping, QC and data analysis have been published53.

Data analysis
GWAS. In the ROOT and AABC GWAS studies, genotyped SNPs were analyzed
and imputed with imputation score >0.3 and minor allele frequency >0.01 to
account for uncertainty in imputation. Unconditional logistic regression was used
to examine the association of each SNP and breast cancer risk adjusting for age,
study site and eigenvectors from Principal Components Analysis (PCA). In the
ROOT GWAS, the first four eigenvectors were used to control for population
stratification as only the first 4 eigenvectors were associated with case status. The
AABC GWAS adjusted for the first 10 eigenvectors from the PCA. OR and 95%
confidence intervals (CI) were calculated from the multivariable logistic regres-
sions. All tests of statistical significance were two sided. Using similar methods,
separate analyses were conducted to compare ER-positive and ER-negative breast
cancers with controls. The AMBER consortium estimated ORs and P values using
unconditional logistic regression, adjusting for 10-year age group, sample type
(saliva, blood, other), study (Black Women’s Health Study (BWHS) versus others)
and PCs that associated with breast cancer at P < 0.1. The GBHS estimated per-
allele ORs and 95% CI for each SNP on allele counts (dosages) using unconditional
logistic regression adjusting for the first ten principal components, self-reported
ethnicity and age. In the Oncoarray African ancestry samples, a total of 27 million
SNPs with MAF ≥ 0.1% and imputation quality score ≥0.3 were included in the
analysis. PCs were estimated using EIGENSTRAT. ORs and P value of each SNP
were estimated using unconditional logistic regression, adjusting for age, study
(Women of African Ancestry Breast Cancer Study—WAABCS versus other) and
the first ten PCs.

The BCAC European study used a two-stage imputation approach, using
SHAPEIT2 for phasing and IMPUTE version 2 for imputation. The first ten
principal components and country were adjusted for in the logistic regression, and
per-allele ORs and standard errors were computed6.

Meta-analysis. Regression coefficient estimates from the five contributing African
ancestry studies were combined in a fixed effects meta-analysis using METAL54.
Variants associated with breast cancer at P < 0.05 from the African ancestry meta-
analysis were then combined in another fixed effects meta-analysis with the
coefficients from the BCAC European ancestry data. Heterogeneity in both meta-
analyses was assessed using the I2 statistic. SNPs that were significant genome-wide
(P < 5 × 10−8) in the cross-ancestry meta-analysis, and >500 kb away from the 180
loci known to be associated with breast cancer risk were identified5,6. Conditional
analysis below confirmed the identified loci. All analyses were done separately for
ER-positive, ER-negative, and overall breast cancer risk.

Regression analysis conditional on index SNPs. In order to identify independent
SNPs in the identified loci, conditional analysis was done in each of the regions,
including all variants in the flanking ±500 kb region of the lead SNP. The 15q24
region had two SNPs about 582 kb apart that were both genome-wide significant
(see results for details). Hence, all variants in the region extending from 500 kb
upstream of the proximal SNP and 500 kb downstream of the other SNP were
included in the conditional analysis for this region. We used the GCTA software
with the –COJO option55, that utilizes summary statistics and population-specific
linkage disequilibrium (LD) from 1000 Genomes Project, for the computation of
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conditional beta coefficients. SNPs significant at p < 10−4 after adjusting for lead
SNP were considered as independent signals. The p < 10−4 cutoff was derived by
applying a factor of 3000 (the ratio of the 3 billion base pairs genome-wide to the 1
million base pairs in each region in the conditional analysis) to the GWAS sig-
nificance of 5 × 10−8. This procedure was repeated until no additional independent
signals were significant. In addition to the conditional analysis involving the lead
SNP and one other candidate SNP, we also determined joint ORs including all
independent loci in the same model. Separate analyses were done for African and
European ancestry data, and the estimates from the conditional analysis were
combined in a meta-analysis.

Functional annotation. The functional annotations of the SNPs were determined
using HaploReg v4.156. Using data from ENCODE57 and the Roadmap Epige-
nomics Consortium58, we examined the chromatin states including core 15-state
model and 25-state model using 12 imputed marks, H3K4me1 and H3K27ac
(enhancers), and H3K4me3 and H3K9ac (promoters) for each identified SNP and
other SNPs in strong LD with these lead SNPs (>0.8). We also assessed evolu-
tionary conserved regions, DNase hypersensitivity sites, and variant effect on
regulatory motifs, proteins bound and eQTL hits from previous studies.

eQTL analysis. We carried out a cis-eQTL analysis to understand possible target
genes in the six loci. All genes within ±1MB around each index SNP were eval-
uated and gene expression in breast tumors from TCGA breast cancer patients
(African ancestry, n= 164 and European ancestry, n= 778) were used in the
analysis. A linear regression model estimated additive effects for each SNP,
adjusting for age, ancestry, copy number variation, batch effect, and molecular
subtype. Separate analyses were done for African and European ancestry samples
and the estimates were meta-analysed to obtain overall estimates. Bonferroni sig-
nificance levels were applied to determine statistical significance. We also checked
associations between the identified loci and gene expression in several tissues,
including normal breast, that had been published from previous eQTL analyses on
the Haploreg website.

Allelic pleiotropy. We assessed the GWAS catalog (www.ebi.ac.uk) for previously
reported associations for the identified lead SNPs and all other SNPs in LD with r2

> 0.4 and phenotypes.

Ethical approval. Informed consent was obtained from all subjects included in the
analysis. The relevant ethical review boards at all participating institutions
approved study protocols.

Data availability
The genotype datasets used in this study are publicly available via dbGaP (https://www.
ncbi.nlm.nih.gov/gap/) including AABC under accession code phs000851.v1.p1, ONCO
under accession code phs001265.v1.p1, AMBER under accession code phs000669.v1.p1,
ROOT under accession code phs000383.v1.p1, and GBHS under accession code
phs002387.v1.p1. Data for TCGA is available via https://portal.gdc.cancer.gov/. The
remaining data are available within the Article, Supplementary Information or Source
Data file.

Code availability
The codes and summary statistics of the top 10000+ variants are stored on github
(https://github.com/gmgaous/Cross-ancestry-GWAS-for-breast-cancer). The remaining
data are available within the Article, Supplementary Information or available from the
authors upon request.
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