492 research outputs found

    Diamond nanophotonics

    Full text link
    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The burgeoning field of nanophotonics has grown to be a major research area, primarily because of the ability to control and manipulate single quantum systems (emitters) and single photons on demand. For many years, studying nanophotonic phenomena was limited to traditional semiconductors (including silicon and GaAs) and experiments were carried out predominantly at cryogenic temperatures. In the last decade, however, diamond has emerged as a new contender to study photonic phenomena at the nanoscale. Offering a plethora of quantum emitters that are optically active at room temperature and ambient conditions, diamond has been exploited to demonstrate super-resolution microscopy and realize entanglement, Purcell enhancement, and other quantum and classical nanophotonic effects. Elucidating the importance of diamond as a material, this progress report highlights the recent achievements in the field of diamond nanophotonics, and conveys a roadmap for future experiments and technological advancements

    Optical metasurfaces: new generation building blocks for multi-functional optics

    Get PDF
    © 2018, The Author(s). Optical metasurfaces (OMs) have emerged as promising candidates to solve the bottleneck of bulky optical elements. OMs offer a fundamentally new method of light manipulation based on scattering from resonant nanostructures rather than conventional refraction and propagation, thus offering efficient phase, polarization, and emission control. This perspective highlights state of the art OMs and provides a roadmap for future applications, including active generation, manipulation and detection of light for quantum technologies, holography and sensing

    Role of recombination pathway competition in spatially resolved cathodoluminescence spectroscopy

    Full text link
    © 2014 AIP Publishing LLC. Cathodoluminescence (CL) analysis enables characterization of optoelectronic materials and devices with high spatial resolution. However, data interpretation is complicated by the competitive nature of the CL generation process. Specifically, spatially resolved CL profiles are affected by both CL center distributions, and by the unknown distributions of recombination centers that do not generate peaks in measured CL spectra. Here, we use depth-resolved CL to show that the contribution of the latter can be deduced and removed from spatially resolved CL data. The utility of this technique is demonstrated using CL depth profiles of color centers in diamond

    Imaging and quantum efficiency measurement of chromium emitters in diamond

    Get PDF
    We present direct imaging of the emission pattern of individual chromium-based single photon emitters in diamond and measure their quantum efficiency. By imaging the excited state transition dipole intensity distribution in the back focal plane of high numerical aperture objective, we determined that the emission dipole is oriented nearly orthogonal to the diamond-air interface. Employing ion implantation techniques, the emitters were engineered with various proximities from the diamond-air interface. By comparing the decay rates from the single chromium emitters at different depths in the diamond crystal, an average quantum efficiency of 28% was measured.Comment: 11 pages and 4 figure

    Subtractive 3d printing of optically active diamond structures

    Full text link
    Controlled fabrication of semiconductor nanostructures is an essential step in engineering of high performance photonic and optoelectronic devices. Diamond in particular has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate the fabrication of optically active, functional diamond structures using gas-mediated electron beam induced etching (EBIE). The technique achieves dry chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by energetic electrons in a water vapor environment. Parallel processing is possible by electron flood exposure and the use of an etch mask, while high resolution, mask-free, iterative editing is demonstrated by direct write etching of inclined facets of diamond microparticles. The realized structures demonstrate the potential of EBIE for the fabrication of optically active structures in diamond

    Engineering chromium related single photon emitters in single crystal diamond

    Get PDF
    Color centers in diamond as single photon emitters, are leading candidates for future quantum devices due to their room temperature operation and photostability. The recently discovered chromium related centers are particularly attractive since they possess narrow bandwidth emission and a very short lifetime. In this paper we investigate the fabrication methodologies to engineer these centers in monolithic diamond. We show that the emitters can be successfully fabricated by ion implantation of chromium in conjunction with oxygen or sulfur. Furthermore, our results indicate that the background nitrogen concentration is an important parameter, which governs the probability of success to generate these centers.Comment: 14 pages, 5 figure

    Design of photonic microcavities in hexagonal boron nitride

    Get PDF
    © 2018 Kim et al. We propose and design photonic crystal cavities (PCCs) in hexagonal boron nitride (hBN) for diverse photonic and quantum applications. Two dimensional (2D) hBN flakes contain quantum emitters which are ultra-bright and photostable at room temperature. To achieve optimal coupling of these emitters to optical resonators, fabrication of cavities from hBN is therefore required to maximize the overlap between cavity optical modes and the emitters. Here, we design 2D and 1D PCCs using anisotropic indices of hBN. The influence of underlying substrates and material absorption are investigated, and spontaneous emission rate enhancements are calculated. Our results are promising for future quantum photonic experiments with hBN
    • …
    corecore