5 research outputs found
Completeness of classical spin models and universal quantum computation
We study mappings between distinct classical spin systems that leave the
partition function invariant. As recently shown in [Phys. Rev. Lett. 100,
110501 (2008)], the partition function of the 2D square lattice Ising model in
the presence of an inhomogeneous magnetic field, can specialize to the
partition function of any Ising system on an arbitrary graph. In this sense the
2D Ising model is said to be "complete". However, in order to obtain the above
result, the coupling strengths on the 2D lattice must assume complex values,
and thus do not allow for a physical interpretation. Here we show how a
complete model with real -and, hence, "physical"- couplings can be obtained if
the 3D Ising model is considered. We furthermore show how to map general
q-state systems with possibly many-body interactions to the 2D Ising model with
complex parameters, and give completeness results for these models with real
parameters. We also demonstrate that the computational overhead in these
constructions is in all relevant cases polynomial. These results are proved by
invoking a recently found cross-connection between statistical mechanics and
quantum information theory, where partition functions are expressed as quantum
mechanical amplitudes. Within this framework, there exists a natural
correspondence between many-body quantum states that allow universal quantum
computation via local measurements only, and complete classical spin systems.Comment: 43 pages, 28 figure
Quantum entanglement, unitary braid representation and Temperley-Lieb algebra
Important developments in fault-tolerant quantum computation using the
braiding of anyons have placed the theory of braid groups at the very
foundation of topological quantum computing. Furthermore, the realization by
Kauffman and Lomonaco that a specific braiding operator from the solution of
the Yang-Baxter equation, namely the Bell matrix, is universal implies that in
principle all quantum gates can be constructed from braiding operators together
with single qubit gates. In this paper we present a new class of braiding
operators from the Temperley-Lieb algebra that generalizes the Bell matrix to
multi-qubit systems, thus unifying the Hadamard and Bell matrices within the
same framework. Unlike previous braiding operators, these new operators
generate {\it directly}, from separable basis states, important entangled
states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like
states, and other states with varying degrees of entanglement.Comment: 5 pages, no figur
Quantum geometry and quantum algorithms
Motivated by algorithmic problems arising in quantum field theories whose
dynamical variables are geometric in nature, we provide a quantum algorithm
that efficiently approximates the colored Jones polynomial. The construction is
based on the complete solution of Chern-Simons topological quantum field theory
and its connection to Wess-Zumino-Witten conformal field theory. The colored
Jones polynomial is expressed as the expectation value of the evolution of the
q-deformed spin-network quantum automaton. A quantum circuit is constructed
capable of simulating the automaton and hence of computing such expectation
value. The latter is efficiently approximated using a standard sampling
procedure in quantum computation.Comment: Submitted to J. Phys. A: Math-Gen, for the special issue ``The
Quantum Universe'' in honor of G. C. Ghirard
Decoherence, einselection, and the quantum origins of the classical
Decoherence is caused by the interaction with the environment. Environment
monitors certain observables of the system, destroying interference between the
pointer states corresponding to their eigenvalues. This leads to
environment-induced superselection or einselection, a quantum process
associated with selective loss of information. Einselected pointer states are
stable. They can retain correlations with the rest of the Universe in spite of
the environment. Einselection enforces classicality by imposing an effective
ban on the vast majority of the Hilbert space, eliminating especially the
flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase
space emerges from the quantum Hilbert space in the appropriate macroscopic
limit: Combination of einselection with dynamics leads to the idealizations of
a point and of a classical trajectory. In measurements, einselection replaces
quantum entanglement between the apparatus and the measured system with the
classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart
from the changes introduced in the editorial process the text is identical
with that in the Rev. Mod. Phys. July issue. Also available from
http://www.vjquantuminfo.or