6 research outputs found

    Pathogenic variability in Exserohilum turcicum and identification of resistant sources to turcicum leaf blight of maize (Zea mays L.)

    Get PDF
    Turcicum leaf blight of maize incited by Exserohilum turcicum (Pass.) Leonard and Suggs is the major limiting factor of maize production in temperate agro-ecologies. Disease management through host plant resistance is the most effective strategy. In the present study among 26 maize genotypes which were initially screened for resistance against E. turcicum under field conditions, 8 genotypes viz., PS 39, CML 451, CML 470, CML 472, VL 1030, VL 1018140, VL1018527 and SMI178-1 were found resistant when screened against twelve isolates of E. turcicum under artificial epiphytotic conditions. Eight genotypes viz., PS45, CML165, CML459, VL1249, VL0536, SMC-5, SMC-3 and KDL 211 were found moderately resistant with disease grade ranged from 2.1-2.5. These maize genotypes possess resistance to turcicum leaf blight can be used successfully in developing high yielding early maturing varieties for high altitude temperate agro-ecologies. The fungus E. turcicum is highly variable in nature. Variability studies on pathogenicity were conducted on twelve isolates of E. turcicum on eleven putative differential maize lines. During the present study a wide pathogenic variation was observed among the twelve isolates of E. turcicum. Cluster analysis on the basis of similarity or dissimilarity in reaction types exhibited by the differential hosts, clustered the isolates into 6 pathogenic groups. The isolates belonged to higher altitudes (Kti 10, Kti11, Kti5) were found to be more aggressive as compared to the isolates of low altitude areas

    Breeding Maize for Food and Nutritional Security

    Get PDF
    Maize occupies an important position in the world economy, and serves as an important source of food and feed. Together with rice and wheat, it provides at least 30 percent of the food calories to more than 4.5 billion people in 94 developing countries. Maize production is constrained by a wide range of biotic and abiotic stresses that keep afflicting maize production and productivity causing serious yield losses which bring yield levels below the potential levels. New innovations and trends in the areas of genomics, bioinformatics, and phenomics are enabling breeders with innovative tools, resources and technologies to breed superior resilient cultivars having the ability to resist the vagaries of climate and insect pest attacks. Maize has high nutritional value but is deficient in two amino acids viz. Lysine and Tryptophan. The various micronutrients present in maize are not sufficient to meet the nutritive demands of consumers, however the development of maize hybrids and composites with modifying nutritive value have proven to be good to meet the demands of consumers. Quality protein maize (QPM) developed by breeders have higher concentrations of lysine and tryptophan as compared to normal maize. Genetic level improvement has resulted in significant genetic gain, leading to increase in maize yield mainly on farmer’s fields. Molecular tools when collaborated with conventional and traditional methodologies help in accelerating these improvement programs and are expected to enhance genetic gains and impact on marginal farmer’s field. Genomic tools enable genetic dissections of complex QTL traits and promote an understanding of the physiological basis of key agronomic and stress adaptive and resistance traits. Marker-aided selection and genome-wide selection schemes are being implemented to accelerate genetic gain relating to yield, resilience, and nutritional quality. Efforts are being done worldwide by plant breeders to develop hybrids and composites of maize with high nutritive value to feed the people in future

    Genotypic and morphological diversity analysis in high altitude maize (Zea mays L.) inbreds under Himalayan temperate ecologies

    Get PDF
    The present investigation was carried out to generate information on genetic divergence of maize (Zea mays L.) inbreds and to identify elite lines to develop potential hybrids for high altitude ecologies. Data were recorded for thirteen (13) quantitative traits viz. germination (%), root depth, shoot length, days to 50 % pollen shed, days to 50% silking, plant height, ear height, ear length, ear girth, number of kernels per row, 100 seed weight, grain yield per plant. The tested genotypes expressed significant variability with high estimates of heritability (broad sense) for all the traits revealing that these traits are amenable to genetic improvement. Grain yield per plant exhibited positive and significant correlation with plant height, ear height, ear width, number of kernels per row, number of kernel rows and 100 seed weight at both the levels which exhibit a strong possibility for improvement of grain yield per plant by selection for these traits. Genetic divergence based on thirteen quantitative traits grouped thirty maize inbred lines into four clusters as per Mahalanobis D2 analysis employing Tocher’s method which revealed wide diversity in elite genotypes owing to the involvement of diverse parental lines in the hybridization programme. Grain yield per hectare was the main factor contributing to total divergence (41.16%) which needs to be considered for highlighting clusters to be chosen for the purpose of further selection

    Abiotic Stress Tolerance-Progress and Pathways of Sustainable Rice Production

    No full text
    Rice is globally a major food crop and its production has progressively been affected by various types of abiotic stresses especially drought, flooding, salinity, heat and cold in most of the cultivable rice ecosystems. The incidence, intensity and duration of these stresses are anticipated to aggravate due to climate change consequences, demanding resilient yields in these situations to be essential. Present paper deals with reviewing various types of abiotic stresses and their mitigation strategies for enhancing and stabilizing rice production in stress prone areas. Review of available literature pertaining to the study area has been used as research methodology for this paper. The available literature suggests that stress-tolerant varieties can serve as the most viable strategy to contribute in coping with the problem of abiotic stresses. Although, good progress has been made in the development of stress-tolerant rice varieties (STRVs) and incessant efforts are being made to spread these varieties in target areas, adoption by farmers is yet to meet expectations. Advantage, affordability, awareness and availability are the main factors responsible for adopting of any technology. The adoption of stress-tolerant varieties has not reached its potential, predominantly due to the lack of awareness and non-availability of seeds amongst farmers. Strategic and intentional collaborations should be ensured for scaling the sustainable delivery and diffusion of STRVs. A promotional roadmap that ensures the linkages between private and public seed sectors remains the key factor for its successful adoption. Similarly, strengthening of formal, informal and semi-formal seed systems is crucial to accelerate the dissemination of these varieties. There is an imperative need to create strategic plans for the development of varieties possessing multiple stress tolerance. Significant investments for sustainability of rice production in stress prone areas form the essential component of long-term agricultural development. The sooner these investments and strategies are accomplished, the greater the gains are expected

    Distribution, Etiology, Molecular Genetics and Management Perspectives of Northern Corn Leaf Blight of Maize (Zea mays L.)

    No full text
    Not AvailableMaize is cultivated extensively throughout the world and has the highest production among cereals. However, Northern corn leaf blight (NCLB) disease caused by Exherohilum turcicum, is the most devastating limiting factor of maize production. The disease causes immense losses to corn yield if it develops prior or during the tasseling and silking stages of crop development. It has a worldwide distribution and its development is favoured by cool to moderate temperatures with high relative humidity. The prevalence of the disease has increased in recent years and new races of the pathogen have been reported worldwide. The fungus E. turcicum is highly variable in nature. Though different management strategies have proved effective to reduce economic losses from NCLB, the development of varieties with resistance to E. turcicum is the most efficient and inexpensive way for disease management. Qualitative resistance for NCLB governed by Ht genes is a race-specific resistance which leads to a higher level of resistance. However, some Ht genes can easily become ineffective under the high pressure of virulent strains of the pathogen. Hence, it is imperative to understand and examine the consistency of the genomic locations of quantitative trait loci for resistance to NCLB in diverse maize populations. The breeding approaches for pyramiding resistant genes against E. turcicum in maize can impart NCLB resistance under high disease pressure environments. Furthermore, the genome editing approaches like CRISPR-cas9 and RNAi can also prove vital for developing NCLB resistant maize cultivars. As such this review delivers emphasis on the importance and current status of the disease, racial spectrum of the pathogen, genetic nature and breeding approaches for resistance and management strategies of the disease in a sustainable manner.Not Availabl
    corecore