7 research outputs found

    Modulation of auxin signalling through DIAGETROPICA and ENTIRE differentially affects tomato plant growth via changes in photosynthetic and mitochondrial metabolism

    Get PDF
    Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica—dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin‐sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes

    Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation?

    Get PDF
    The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits

    Ethylene coordinates seed germination behavior in response to low soil pH in Stylosanthes humilis

    No full text
    Stylosanthes humilis is known to exhibit high persistence in acid soils, however, how low soil pH controls seed germination as well as root and hypocotyl growth remains unknown. This study was carried out to evaluate the hormonal and metabolic alterations induced by low soil pH on seed germination behavior of S. humilis.Seeds of S. humilis were sown in acid soil samples or sand soaked in buffer solution with pH ranging from 4.0 to 7.0. Concentrations of indole-3-acetic acid, ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), primary metabolite profile and final seed germination were evaluated after four days.Low soil pH led to increased final seed germination, concomitantly with higher root penetration into the soil as well as higher ACC and ethylene production by seedlings. Treatment with the ethylene biosynthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) greatly reduced final seed germination under acidic conditions. Final seed germination of seeds treated with AVG was increased by exogenous ethylene application in a dose-dependent manner. Furthermore, low soil pH promoted distinct changes in IAA concentrations, and in carbon and nitrogen metabolism in hypocotyl and roots.Low soil pH increases the final germination of S. humilis seeds through alterations in ethylene metabolism, allowing root penetration into the soil

    Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation?

    Get PDF
    The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits

    Salt stress inhibits germination of Stylosanthes humilis seeds through abscisic acid accumulation and associated changes in ethylene production

    No full text
    In Stylosanthes humilis, salt stress tolerance is associated with ethylene production by the seeds, however, how salt stress controls seed germination and ethylene production is poorly understood. Here, we studied the hormonal and metabolic changes triggered by salt stress on germination of S. humilis seeds. Salt stress led to decreased seed germination and ethylene production, concomitantly with higher abscisic acid (ABA) production by seeds. Treatment with NaCl and ABA promoted distinct changes in energy metabolism, allowing seeds to adapt to salt stress conditions. Treatment with the ABA biosynthesis inhibitor fluridone or ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) reversed the effects of salt stress on seed germination and ethylene production. Moreover, ethylene concentration was decreased by increasing the pH of the salt solution. High pH, however, did not influence concentration of ABA in seeds under salt stress. We conclude that biosynthesis of ABA and ethylene in response to salt stress constitutes a point of convergence that provides flexibility to regulate energy metabolism and embryo growth potential of S. humilis seeds within a given pH condition
    corecore