10 research outputs found

    Ellagic acid: Biological properties and biotechnological development for production processes

    Get PDF
    Ellagic acid, 2,3,7,8-tetrahydroxy-chromeno[5,4,3-cde]chromene-5,10-dione, is a powerful bioactive compound with many potential pharmacological and industrial applications. In this review, the chemical aspects, biological properties and diverse potential applications of ellagic acid for different industries were described. This review also discussed the advance in ellagitannin biodegradation, focusing on the process of isolation of microorganisms and strain selection, medium and culture optimization, as well as fermentation systems for commercially viable industrial scale production. The performances of various fermentation techniques that have been applied for the production of ellagic acid from residual by-products were compared, while the advantages and disadvantages of each plant source were also discussed.Key words: Ellagic acid, ellagitannin, biodegradation, fungal physiology, solid-state fermentation, submerged fermentation

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Process stability of Capsicum annuum pectin methylesterase in model systems, pepper puree and intact pepper tissue

    No full text
    Process stability studies towards temperature and/or pressure on pepper pectin methylesterase (PME) were carried out in different systems (purified form, crude extract, pepper pieces and puree) at pH 5.6. Within the temperature range studied (22–80 °C, 5 min), pepper PME in pure form and crude extract was gradually inactivated showing a biphasic inactivation behaviour, indicating the presence of isoenzymes of different thermostability. Pepper samples heated for 15 min showed a maximum of residual PME activity around 55 °C. Isothermal inactivation of pepper PME in purified form and crude extract at pH 5.6 could be described by a biphasic inactivation model for the temperature range studied (62–76 °C). A stable behaviour towards high-pressure/temperature treatments (400–800 MPa/25–60 °C) was observed for crude extract and purified pepper PME. PME in pepper puree samples revealed to be very pressure stable. Mild temperatures combined with pressure treatments seem to increase the extractability from PME in pepper tissue, probably due to the effect on the cell structure
    corecore